Extreme difference in rate of mitochondrial and nuclear DNA evolution in a large ectotherm, Galápagos tortoises.

Mol Phylogenet Evol

Department of Ecology and Evolutionary Biology and Yale Institute of Biospheric Studies, Yale University, New Haven, CT 06520-8106, USA.

Published: May 2004

We sequenced approximately 4.5 kb of mtDNA from 161 individuals representing 11 named taxa of giant Galápagos tortoises (Geochelone nigra) and about 4 kb of non-coding nuclear DNA from fewer individuals of these same 11 taxa. In comparing mtDNA and nucDNA divergences, only silent substitutions (introns, ITS, mtDNA control region, and synonymous substitutions in coding sequences) were considered. mtDNA divergence was about 30 times greater than that for nucDNA. This rate discrepancy for mtDNA and nucDNA is the greatest yet documented and is particularly surprising for large ectothermic animals that are thought to have relatively low rates of mtDNA evolution. This observation may be due to the somewhat unusual reproductive biology and biogeographic history of these organisms. The implication is that the ratio of effective population size of nucDNA/mtDNA is much greater than the usually assumed four. The nearly neutral theory of molecular evolution predicts this would lead to a greater difference between rates of evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2004.02.004DOI Listing

Publication Analysis

Top Keywords

nuclear dna
8
galápagos tortoises
8
mtdna nucdna
8
mtdna
6
extreme difference
4
difference rate
4
rate mitochondrial
4
mitochondrial nuclear
4
evolution
4
dna evolution
4

Similar Publications

Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e.

View Article and Find Full Text PDF

Regulation of pattern recognition receptor signaling by palmitoylation.

iScience

February 2025

Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Pattern recognition receptors (PRRs), consisting of Toll-like receptors, RIG-I-like receptors, cytosolic DNA sensors, and NOD-like receptors, sense exogenous pathogenic molecules and endogenous damage signals to maintain physiological homeostasis. Upon activation, PRRs stimulate the sensitization of nuclear factor κB, mitogen-activated protein kinase, TANK-binding kinase 1-interferon (IFN) regulatory factor, and inflammasome signaling pathways to produce inflammatory factors and IFNs to activate Janus kinase/signal transducer and activator of transcription signaling pathways, resulting in anti-infection, antitumor, and other specific immune responses. Palmitoylation is a crucial type of post-translational modification that reversibly alters the localization, stability, and biological activity of target molecules.

View Article and Find Full Text PDF

NEAT1 regulates BMSCs aging through disruption of FGF2 nuclear transport.

Stem Cell Res Ther

January 2025

College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.

Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.

View Article and Find Full Text PDF

Aims/hypothesis: Within the small intestine, neutrophils play an integral role in preventing bacterial infection. Upon interaction with bacteria or bacteria-derived antigens, neutrophils initiate a multi-staged response of which the terminal stage is NETosis, formation of protease-decorated nuclear DNA into extracellular traps. NETosis has a great propensity to elicit ocular damage and has been associated with diabetic retinopathy and diabetic macular oedema (DME) progression.

View Article and Find Full Text PDF

TDP-43 nuclear retention is antagonized by hypo-phosphorylation of its C-terminus in the cytoplasm.

Commun Biol

January 2025

Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France.

Protein aggregation is a hallmark of many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), in which TDP-43, a nuclear RNA-binding protein, forms cytoplasmic inclusions. Here, we have developed a robust and automated method to assess protein self-assembly in the cytoplasm using microtubules as nanoplatforms. Importantly, we have analyzed specifically the self-assembly of full-length TDP-43 and its mRNA binding that are regulated by the phosphorylation of its self-adhesive C-terminus, which is the recipient of many pathological mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!