Modeling non-heme iron proteins.

Curr Opin Chem Biol

Department of Chemistry, The University of Chicago, IL 60637, USA.

Published: April 2004

Synthetic modeling studies of non-heme iron proteins continue to contribute to our understanding of the mechanism of these proteins. Recently, mononuclear Fe(IV)=O complexes have been prepared and characterized to model the same species that are proposed to be the reactive intermediates in reactions involving mononuclear non-heme iron proteins. Generation of such species for the oxidation of organic substrates has also been demonstrated. Other advances include successful modeling of the structural and functional aspects of diiron non-heme proteins with the use of terphenyl-based carboxylate ligands and the development of several iron-based reagents that catalyze oxidation reactions with the use of various oxidants, including dioxygen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2004.02.002DOI Listing

Publication Analysis

Top Keywords

non-heme iron
12
iron proteins
12
proteins
5
modeling non-heme
4
proteins synthetic
4
synthetic modeling
4
modeling studies
4
studies non-heme
4
proteins continue
4
continue contribute
4

Similar Publications

Background: Ferritin is a cage-like iron storage protein and can regulate the iron balance of life. It can be developed as a new type of iron supplement, while its function may be influenced by certain food bioactive components. To evaluate the effects of the typical food biomolecules, such as phenolic acid, on the physicochemical property of ferritin are of great importance to clarify the ferritin function in maintaining iron balance.

View Article and Find Full Text PDF

Background And Purpose: Bioavailability studies and observational evidence suggest that heme iron (HI) may have greater impact on iron status indicators compared with non-heme iron (NHI). This systematic review and meta-analysis aimed to review the current evidence on the effect of the administration of HI compared with NHI for improving iron status in non-hospitalized population groups.

Methods: We searched Pubmed, CENTRAL, Scopus, Web of Science, and LILACS from inception to July 2024.

View Article and Find Full Text PDF

Non-heme iron is essential for critical neuronal functions such as ATP generation, synaptogenesis, neurotransmitter synthesis, and myelin formation. However, as non-heme iron accumulates with age, excessive levels can contribute to oxidative stress, potentially disrupting neuronal integrity and contributing to cognitive decline. Despite growing evidence linking high brain iron with poorer cognitive performance, there are currently no proven methods to reduce brain iron accumulation in aging or to protect cognitive function from iron's negative effects.

View Article and Find Full Text PDF

Pirin is a non-heme iron binding protein with a variety of proposed functions including serving as a co-activator of p65 NFκB and quercetinase activity. We report here, failure to confirm pirin's primary proposed mechanism, binding of Fe(III)-pirin and p65. Analytical size exclusion chromatography (SEC) and fluorescence polarization (FP) studies did not detect an interaction.

View Article and Find Full Text PDF

Non-heme iron (Fe), α-ketoglutarate (α-KG)-dependent oxygenases are a family of enzymes that catalyze an array of transformations that cascade forward after the formation of radical intermediates. Achieving control over the reaction pathway is highly valuable and a necessary step toward broadening the applications of these biocatalysts. Numerous approaches have been used to engineer the reaction pathway of Fe/α-KG-dependent enzymes, including site-directed mutagenesis, DNA shuffling, and site-saturation mutagenesis, among others.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!