To directly activate specific gene expression, the estrogen receptor (ER) must bind to estrogen receptor response elements (EREs) in the context of nucleosomes. In order to investigate the interaction of the ER with mononucleosomes, we developed a mononucleosome gel shift assay. A 164 bp high specific activity [(32)P]probe DNA (32 bp consensus ERE with flanking regions separated by 23 nucleotides from an artificial nucleosome positioning sequence) was prepared. Nuclear extracts from MCF-7 cells or recombinant human ERalpha were incubated with the labeled ERE +/- excess ERE. A retarded band was seen which was completely obliterated with excess ERE, confirming the specificity of binding. This probe was then used to make reconstituted mononucleosomes by sequential dilution of a high salt histone preparation. The nucleosomes were purified by sucrose density gradients and footprinting analysis was performed to demonstrate that the mononucleosomes were rotationally phased as seen by a periodic digestion pattern (10 bp) of the nucleosomes versus ERE. Nucleosomes were incubated with nuclear extracts containing ER or recombinant ERalpha. Dose dependence in the shift of the mononucleosomes with increasing concentrations of ER was observed. Specificity was demonstrated in experiments with excess ERE and anti-ER antibody. Footprinting analysis was also performed. We also determined that addition of high mobility group protein-2 (HMGB-2, a protein closely related to HMGB-1) with the ER increased the interaction of ER with mononucleosomes. These studies will allow us to address the interactions of ER with core histones containing a multiplicity of variants and modifications in nucleosomal structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mce.2003.11.023 | DOI Listing |
Cancer Treat Rev
January 2025
Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden. Electronic address:
Importance: Endocrine treatments, such as Tamoxifen (TAM) and/or Aromatase inhibitors (AI), are the adjuvant therapy of choice for hormone-receptor positive breast cancer. These agents are associated with menopausal symptoms, adversely affecting drug compliance. Topical estrogen (TE) has been proposed for symptom management, given its' local application and presumed reduced bioavailability, however its oncological safety remains uncertain.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Internal Medicine, Division of Hematology and Oncology, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Republic of Korea.
Rationale: Aggressive angiomyxoma (AAM) is an exceptionally rare mesenchymal tumor that predominantly manifests in the female genital organs during the reproductive age. Its rarity alone makes it a fascinating subject for study. The diagnosis of AAM necessitates differentiation from other benign or mesenchymal tumors and can be confirmed through immunohistochemistry (IHC) staining.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
Purpose: To investigate whether hormone receptor-positive, human epidermal growth factor receptor 2-low (HR+HER2-low) versus HR+HER2-zero early breast cancers have distinct genomic and clinical characteristics.
Methods: This study included HR+, HER2-negative early breast cancers from patients enrolled in the phase III, randomized BIG 1-98 and SOFT clinical trials that had undergone tumor genomic sequencing. Tumors were classified HR+HER2-low if they had a centrally reviewed HER2 immunohistochemistry (IHC) score of 1+ or 2+ with negative in situ hybridization and HR+HER2-zero if they had an HER2 IHC score of 0.
Mol Carcinog
January 2025
Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
Tamoxifen is one of the most frequently used endocrine medications for the treatment of estrogen receptor-positive (ER + ) breast cancer (BC). Unfortunately, tamoxifen resistance (TR) brings more challenges to the clinical treatment, and the mechanisms of TR have not yet been fully clarified. HGF/c-Met is closely associated with cancer metastasis, but whether it is involved in TR remains unclear.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
Background: Current treatment strategies for hormone-dependent breast cancers, including adjuvant endocrine therapy, often fail due to persistence of breast cancer stem cells (brCSCs), which are significant contributors to tumor recurrence and treatment resistance. Therefore, gaining deeper insights into the molecular regulators driving breast cancer aggressiveness is important. Moreover, given the complexities and expenses involved in developing new pharmacological agents, the strategic repurposing of existing FDA-approved drugs to target these key molecular pathways presents a compelling approach for identifying novel therapeutic interventions aimed at mitigating tumor refractoriness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!