Objective: To demonstrate molecular insight into the pathology of Peyronie's disease (PD). A preliminary profile of differential gene expression between the PD plaque and control tunica albuginea was obtained with DNA microarrays. Also, to investigate the effect of intervention in PD cells, transforming growth factor-beta1 (TGF-beta1) was recruited to treat PD cell lines.

Methods: Three PD plaques and control tunica albugineas were constructed and studied. cDNA probes were prepared from RNA isolated from those cells and hybridized with the Clontech Atlas 3.6 Array. Relative changes of greater than 2.0 defined up-regulation and down-regulation, respectively. The expression of selected individual gene MCP-1 and the effect of TGF-beta1 on MCP-1 were analyzed by reverse transcriptase-polymerase chain reaction.

Results: Some up-regulated genes in the PD plaque detected by the Clontech assay were screened, one of them was monocyte chemotactic protein. One involved the pathogenesis of PD as a downstream gene and responded to the TGF-beta1 treatment but not CTGF. The results were also confirmed by TR-PCR in all the types of cell.

Conclusions: The cell lines from plaque tissue and normal tunica from men with PD were successfully established. The findings indicate a potential role for MCP-1 over expression in the pathogenesis of PD as a downstream gene regulated by some genes and could be a new therapeutic target in PD. The information may allow a better understanding of the basic mechanisms involved in the etiology and pathogenesis of PD. Furthermore, it may permit some strategies of therapeutic interventions combine routine methods with Chinese herbal medicine.

Download full-text PDF

Source

Publication Analysis

Top Keywords

transforming growth
8
growth factor-beta1
8
control tunica
8
pathogenesis downstream
8
downstream gene
8
[gene expression
4
expression profiles
4
profiles effects
4
effects transforming
4
factor-beta1 intervention
4

Similar Publications

Septic arthritis (SA) caused by Staphylococcus aureus is a severe inflammatory joint disease, characterized by synovitis accompanied with cartilage destruction and bone erosion. The available antibiotic treatment alone is insufficient to resolve the inflammation that leads to high rates of morbidity and mortality. Among the CD4 T helper lymphocytes, the Th17 and Tregs are key regulators of immune homeostasis.

View Article and Find Full Text PDF

Introduction: The risk of kidney fibrosis is significantly elevated in individuals with diabetes, chronic nephritis, trauma, and other underlying conditions. Concurrently, human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) and their extracellular vesicles (MSC-Exos) have gained prominence in regenerative medicine. In light of these observations, we are undertaking a meta-analysis to elucidate the influence of hUCB-MSCs and MSC-Exos on kidney fibrosis.

View Article and Find Full Text PDF

Purpose: Cardiac fibrosis, a key contributor to ventricular pathologic remodeling and heart failure, currently lacks effective therapeutic approaches.

Patients And Methods: Small extracellular vesicles from young healthy human plasma (Young-sEVs) were characterized via protein marker, transmission electron microscopy, and nanoparticle tracking analysis, then applied in cellular models and mouse models of cardiac fibrosis. Western blotting and qRT-PCR were used to identify protective signaling pathways in cardiac fibroblasts (CFs).

View Article and Find Full Text PDF

Butyrate-producing bacteria (BPB) benefit the health of aquatic animals. This current study aimed to isolate BPB from the intestines of and assess their probiotic potential. The results showed that nine isolates were obtained in vitro from the gut of , including six , two , and one .

View Article and Find Full Text PDF

Background: Loeys-Dietz syndrome (LDS) is a clinically and genetically heterogeneous, autosomal dominant aortic aneurysm syndrome with widespread systemic involvement. We present the case of a 16.5-year-old girl with LDS type 2 (LDS2) caused by a heterozygous pathogenic variant, c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!