The ribosomal protein RpL14 gene has been characterized in several species, including, human, rat and fruit fly. Haploinsufficiency for the gene causes the Minute phenotype in Drosophila, and it has been proposed as a regulator in the tumorigenic pathway in human. Several features concerning the gene structure have been studied, and some of these differ between human/rat and Drosophila. To address functional and evolutionary questions about these differences we have isolated and sequenced a cDNA and a genomic clone covering the RpL14 gene from the pufferfish Takifugu rubripes (Fugu). The Fugu RpL14 gene is approximately 2 Kb, with 5 introns, and encodes a protein of 137 amino acids. The protein contains a KOW-motif and a nuclear localization signal, which are conserved among a wide range of RPL14 proteins. On the other hand, a variable amino acid (alanine) repeat observed in human is missing in Takifugu rubripes, and the protein is shorter than its mammalian counterparts. Compared with human, the RpL14 gene in Fugu contains introns localized at identical positions in the gene, and most of them are shorter. A comparison of the RpL14 gene structure from a broad range of organisms indicates that both loss and gain of introns have occurred during the evolution of the gene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1601-5223.2003.01762.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!