Tooth tissue loss from bruxism has been demonstrated to be associated with various dental problems such as tooth sensitivity, excessive reduction of clinical crown height, and possible changes of occlusal relationship. A literature search revealed a number of treatment modalities, with an emphasis on prevention and rehabilitation with adhesive techniques. Rehabilitating a patient with bruxism-associated tooth tissue loss to an acceptable standard of oral health is clinically demanding and requires careful diagnosis and proper treatment planning. This article describes the management of excessive tooth tissue loss in a 43-year-old woman with a history of bruxism. The occlusal vertical dimension of the patient was re-established with the use of an acrylic maxillary occlusal splint, followed by resin composite build-up. Full-mouth oral rehabilitation ultimately involved constructing multiple porcelain veneers, adhesive gold onlays, ceramo-metal crowns, and fixed partial dentures.
Download full-text PDF |
Source |
---|
Background: It is generally accepted that the greater palatine nerve and artery supply the palatal mucosa, gingiva, and glands, but not the bone or tooth adjacent to those tissues. When the bony palate is observed closely, multiple small foramina are seen on the palatal surface of the alveolar process. The authors hypothesized that the greater palatine nerve and artery might supply the maxillary teeth via the foramina on the palatal surface of the alveolar process and the superior alveolar nerve and artery.
View Article and Find Full Text PDFMater Today Bio
February 2025
School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, 510006, China.
Periodontal disease stands the leading cause of tooth loss in adults. While scaling and root planning is considered the "gold standard" treatment, it is often insufficient in efficiently eliminating anaerobic bacteria from deep periodontal pockets. In this work, an antibiotic-free and photo-curing hyaluronic acid-Janus (H-Janus) antibacterial pack was developed to inhibit the growth and colonization of residual bacteria within the pockets for reducing the recurrence of periodontitis.
View Article and Find Full Text PDFOral Radiol
January 2025
Department of Software Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, 4800, Turkey.
Objectives: Pulp stones are ectopic calcifications located in pulp tissue. The aim of this study is to introduce a novel method for detecting pulp stones on panoramic radiography images using a deep learning-based two-stage pipeline architecture.
Materials And Methods: The first stage involved tooth localization with the YOLOv8 model, followed by pulp stone classification using ResNeXt.
Neuroscience
January 2025
Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India. Electronic address:
Lead (Pb) is an environmental toxin ubiquitously present in the human environment due to anthropogenic activities and industrialization. Lead can enter the human body through various sources and pathways, such as inhalation, ingestion and dermal contact, leading to detrimental health effects. The majority of lead that enters the body is removed by urine or feces; however, under chronic exposure conditions, lead is not efficient, as lead is absorbed and transferred to numerous organs, such as the brain, liver, kidney, muscles, and heart, and it is ultimately stored in mineralizing tissues such as bones and teeth.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
Inositol 1,4,5-trisphosphate receptors (IP3R) mediate Ca2+ release from intracellular stores, contributing to complex regulation of numerous physiological responses. The involvement of the three IP3R genes (ITPR1, ITPR2 and ITPR3) in inherited human diseases has started to shed light on the essential roles of each receptor in different human tissues and cell types. Variants in the ITPR3 gene, which encodes IP3R3, have recently been found to cause demyelinating sensorimotor Charcot-Marie-Tooth neuropathy type 1J (CMT1J).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!