A quantitative evaluation of the effects of inhibitors of tubulin assembly on polymerization induced by discodermolide, epothilone B, and paclitaxel.

Cancer Chemother Pharmacol

Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, USA.

Published: May 2004

Purpose: To determine whether inhibitors of microtubule assembly inhibit polymerization induced by discodermolide and epothilone B, as well as paclitaxel, and to quantitatively measure such effects.

Methods: Inhibition was quantitated by measuring polymer formation either by turbidimetry or by centrifugation, and the amount of inhibitor required to inhibit 50% relative to an appropriate control reaction was determined.

Results: The inhibitory drugs evaluated were four colchicine site agents (combretastatin A-4, podophyllotoxin, nocodazole, and N-acetylcolchinol- O-methyl ether), maytansine, which competitively inhibits the binding of Catharanthus alkaloids to tubulin, halichondrin B and phomopsin A, which noncompetitively inhibit the binding of Catharanthus alkaloids to tubulin, and the depsipeptide dolastatin 15. While relative inhibitory effects were highly variable, a few broad generalizations can be made. First, assembly reactions that were either enhanced or dependent upon all three stimulatory drugs were subject to inhibition by all inhibitors. Second, the more readily the tubulin assembled, the greater the concentration of inhibitor required to inhibit polymerization. Drug IC50 values were generally lowest with no stimulatory drug and highest when discodermolide was present; IC50 values were higher as reaction temperature increased; and IC50 values were higher as the tubulin concentration increased. Third, inhibition of assembly by inhibitors of Catharanthus alkaloid binding to tubulin changed much less as a function of changes in reaction conditions than inhibition by inhibitors of colchicine binding.

Conclusions: Since there was no apparent quantitative predictability of combined drug interactions with tubulin, any combination of interest must be studied in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00280-003-0755-0DOI Listing

Publication Analysis

Top Keywords

ic50 values
12
polymerization induced
8
induced discodermolide
8
discodermolide epothilone
8
inhibit polymerization
8
inhibitor required
8
required inhibit
8
binding catharanthus
8
catharanthus alkaloids
8
alkaloids tubulin
8

Similar Publications

Sesquiterpenes and lignans from the branches and leaves of Wikstroemia micrantha.

Chem Biodivers

January 2025

Naval Medical University, Phytochemistry, No.325 Guohe Road, Not Available, 200433, Shanghai, CHINA.

One new Sesquiterpene wikstromicrol (1), one new lignan (7R, 8S, 8'S)-9-acetoxyl (-)-isolariciresinol (8), and twelve known compounds were isolated from the branches and leaves of Wikstroemia micrantha. The structures of new compounds were elucidated by extensive interpretation of spectroscopic data and quantum chemical calculations of ECD spectra. The bioactivity assay showed that compounds 6 and 7 had weak cytotoxicity against MCF-7, HCT-116, and HL-60 cell lines with IC50 values ranging from 33.

View Article and Find Full Text PDF

An approach combining enzymatic inhibition and untargeted metabolomics through molecular networking was employed to search for human recombinant full-length protein tyrosine phosphatase 1B (PTP1 B) inhibitors from a collection of 66 mangrove-associated fungal taxa. This strategy prioritized two strains (IQ-1612, section , and IQ-1620, section ) for further studies. Chemical investigation of strain IQ-1612 resulted in the isolation of a new nonanolide derivative, roseoglobuloside A (1: ), along with two known metabolites (2: and 3: ), whereas strain IQ-1620 led to the isolation of four known naphtho-γ-pyrones and one known diketopiperazine (4: -8: ).

View Article and Find Full Text PDF

In vitro comparative analysis of metabolic capabilities and inhibitory profiles of selected CYP2D6 alleles on tramadol metabolism.

Clin Transl Sci

February 2025

Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, Florida, USA.

Tramadol, the 41st most prescribed drug in the United States in 2021 is a prodrug activated by CYP2D6, which is highly polymorphic. Previous studies showed enzyme-inhibitor affinity varied between different CYP2D6 allelic variants with dextromethorphan and atomoxetine metabolism. However, no study has compared tramadol metabolism in different CYP2D6 alleles with different CYP2D6 inhibitors.

View Article and Find Full Text PDF

This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.

View Article and Find Full Text PDF

The chemical investigation of the fruits of Garcinia schomburgkiana growing in Vietnam led to the isolation of a new anofinic acid derivative, 5-hydroxy-8-methoxyanofinic acid (1), a new xanthone, xanthoschome C (2), and a known synthetic phenolic analogue, 4-(2-hydroxybenzyl)-2-(4-hydroxybenzyl) phenol (3), along with seven known xanthones (4-10). The structures of all isolated compounds were determined using spectroscopic techniques (NMR and MS), in conjunction with comparison to existing literature data. All isolated compounds were assessed for their α-glucosidase inhibitory activity and showed significant inhibition, with IC50 values ranging from 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!