Objective: To evaluate the effect of a humanized monoclonal antibody to immunoglobulin E, omalizumab (Xolair, Novartis Pharmaceuticals, East Hanover, NJ; Genentech Inc, South San Francisco, CA), on airway inflammation in asthma, as indicated by the fractional concentration of exhaled nitric oxide (FE(NO)), a noninvasive marker of airway inflammation. Xolair was approved recently by the US Food and Drug Administration for moderate-to-severe allergic asthma in adolescents and adults.

Study Design: As an addendum at 2 sites to a randomized, multicenter double-blind, placebo-controlled trial, FE(NO) was assessed in children with allergic asthma over 1 year. There were 3 consecutive study periods: 1) stable dosing of inhaled beclomethasone dipropionate (BDP) when the dose was optimized (period of 16 weeks); 2) inhaled steroid-reduction phase (period of 12 weeks), during which BDP was tapered if subjects remained stable; and 3) open-label extension phase, during which subjects receiving placebo were switched to active omalizumab (period of 24 weeks). The primary outcome was area under the FE(NO) versus time curve (AUC) for adjusted FE(NO), defined as the ratio of FE(NO) at each time point compared with the value at baseline.

Results: Twenty-nine subjects participated and were randomized to omalizumab (n = 18) and placebo (n = 11) treatment groups in a 2:1 ratio dictated by the main study. There was a significant difference for age, resulting in a difference in absolute forced expiratory volume in 1 second but no difference in asthma severity based on the forced expiratory volume in 1 second percentage predicted. Baseline BDP dose was comparable between groups, as were baseline values of mean FE(NO) (active: 38.6 +/- 25.6 ppb; placebo: 52.7 +/- 52.9 ppb). The degree of BDP dose reduction during the steroid-reduction and open-label phases was equivalent between the omalizumab and placebo-treated groups; subjects in the omalizumab- and placebo-treated groups had reduced their BDP dose by an average of 51% and 60%, respectively, at the end of the steroid-reduction phase and by 68% and 94%, respectively, by the end of the open-label period. In the active and placebo groups, 44% and 27% and 75% and 73% of subjects had stopped use of inhaled corticosteroids at the end of the steroid-reduction and open-label phases, respectively. There was no significant difference between the active and placebo groups during the steroid-stable phase for AUC of adjusted nitric oxide (1.31 +/- 1.511 vs 1.45 +/- 0.736). However, during the steroid-reduction phase, the variability of adjusted FE(NO) in the placebo-treated group was greater than that of the omalizumab-treated group at most visits, with a significant difference between groups for AUC of adjusted nitric oxide (0.88 +/- 0.69 vs 1.65 +/- 1.06). FE(NO) fell from 82.1 +/- 55.6 ppm at the end of the steroid-reduction phase to 33.3 +/- 21.6 ppb at the end of the open-label period in the placebo group who were placed on active omalizumab. This decrease occurred while the mean dose of BDP remained very low. Analysis of FE(NO) over 52 weeks of omalizumab treatment in the active group demonstrated that there was a significant reduction from baseline to the end of the open-label period (41.9 +/- 29.0 to 18.0 +/- 21.8 ppb) despite a high degree of steroid reduction.

Conclusion: In this preliminary study based on FE(NO), a noninvasive marker of airway inflammation, treatment with omalizumab may inhibit airway inflammation during steroid reduction in children with allergic asthma. The degree of inhibition of FE(NO) was similar to that seen for inhaled corticosteroids alone, suggesting an antiinflammatory action for this novel therapeutic agent in asthma. This is in keeping with recent evidence that omalizumab inhibits eosinophilic inflammation in induced sputum and endobronchial tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1542/peds.113.4.e308DOI Listing

Publication Analysis

Top Keywords

nitric oxide
16
airway inflammation
16
bdp dose
16
steroid-reduction phase
16
allergic asthma
12
period weeks
12
auc adjusted
12
open-label period
12
feno
11
+/-
10

Similar Publications

Receptors for the vasoactive adipokine apelin, termed APJ receptors, are G-protein-coupled receptors and are widely expressed throughout the cardiovascular system. APJ receptors can also signal via G-protein-independent pathways, including G-protein-coupled-receptor kinase 2 (GRK2), which inhibits nitric oxide synthase (eNOS) activity and nitric oxide (NO) production in endothelial cells. Apelin causes endothelium-dependent, NO-mediated relaxation of coronary arteries from normotensive animals, but the effects of activating APJ receptor signaling pathways in hypertensive coronary arteries are largely unknown.

View Article and Find Full Text PDF

Background And Aim: In the context of gastrointestinal diseases, the role of monoacylglycerol lipase (MAGL) is significant. Therefore, the objective of this study was to examine the protective effects of MAGL inhibition using JZL184 in rat models of severe acute pancreatitis (SAP) and to explore its mechanism.

Methods: In this study, a rat model of SAP was established, and the rats were divided into three groups for treatment: the Control group (CON), the SAP group (SAP), and the SAP group treated with JZL184 (JZL184).

View Article and Find Full Text PDF

In this study, Chinese yam polysaccharides (CYPs) were fermented using M616, and changes in the chemical composition, structure, and anti-inflammatory activity of CYPs before and after fermentation were investigated. The carbohydrate content of M616-fermented CYP (CYP-LP) increased from 71.03% ± 2.

View Article and Find Full Text PDF

Management of traumatic brain injury and acute respiratory distress syndrome-What evidence exists? A scoping review.

J Intensive Care Soc

January 2025

Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, USA.

Introduction: Up to 20% of patients with traumatic brain injury (TBI) develop acute respiratory distress syndrome (ARDS), which is associated with increased odds of mortality. Guideline-based treatment for ARDS includes "lung protective" ventilation strategies, some of which are in opposition to "brain protective" strategies used for ventilation with patients with TBI. We conducted a scoping review of ventilation management strategies with clinical outcomes among patients with TBI and ARDS.

View Article and Find Full Text PDF

Recent advances in the role of gasotransmitters in necroptosis.

Apoptosis

January 2025

Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.

Necroptosis is a finely regulated programmed cell death process involving complex molecular mechanisms and signal transduction networks. Among them, receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein are the key molecules regulating this process. In recent years, gasotransmitters such as nitric oxide, carbon monoxide and hydrogen sulfide have been suggested to play a regulatory role in necroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!