Autonomous function of the amino-terminal inhibitory domain of TAF1 in transcriptional regulation.

Mol Cell Biol

Division of Molecular and Cellular Biology, Graduate School of Integrated Science, Yokohama City University, Yokohama 230-0045, Japan.

Published: April 2004

The general transcription factor TFIID is composed of TATA-binding protein (TBP) and 14 TBP-associated factors (TAFs). TFIID mediates the transcriptional activation of a subset of eukaryotic promoters. The N-terminal domain (TAND) of TAF1 protein (Taf1p) inhibits TBP by binding to its concave and convex surfaces. This study examines the role of the TAND in transcriptional regulation and tests whether the TAND is an autonomous regulator of TBP. The TAND binds to and regulates TBP function when it is fused to the amino or carboxy terminus of Taf1p, the amino or carboxy terminus of Taf5p, or the amino terminus of Taf11p. However, a carboxy-terminal fusion of the TAND and Taf11p is not compatible with several other TAF proteins, including Taf1p, in the TFIID complex. These results indicate that there is no or minimal geometric constraint on the ability of the TAND to function normally in transcriptional regulation as long as TFIID assembly is secured.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC381648PMC
http://dx.doi.org/10.1128/MCB.24.8.3089-3099.2004DOI Listing

Publication Analysis

Top Keywords

transcriptional regulation
12
amino carboxy
8
carboxy terminus
8
tand
6
autonomous function
4
function amino-terminal
4
amino-terminal inhibitory
4
inhibitory domain
4
domain taf1
4
transcriptional
4

Similar Publications

Although not essential for their growth, the production of secondary metabolites increases the fitness of the producing microorganisms in their natural habitat by enhancing establishment, competition, and nutrient acquisition. The Gram-positive soil-dwelling bacterium, , produces a variety of secondary metabolites. Here, we investigated the regulatory relationship between the non-ribosomal peptide surfactin and the sactipeptide bacteriocin subtilosin A.

View Article and Find Full Text PDF

CASK, a MAGUK family scaffold protein, regulates gene expression as a transcription co-activator in neurons. However, the mechanism of CASK nucleus translocation and the regulatory function of CASK in myeloid cells remains unclear. Here, we investigated its role in H5N1-infected macrophages.

View Article and Find Full Text PDF

Background: Maintenance immunosuppression is required for suppression of alloimmunity or allograft rejection. However, continuous use of immunosuppressants may lead to various side effects, necessitating the use of alternative immunosuppressive drugs. The early secreted antigenic target of 6 kDa (ESAT-6) is a virulence factor and immunoregulatory protein of mycobacterium tuberculosis (Mtb), which alters host immunity through dually regulating development or activation of various immune cells.

View Article and Find Full Text PDF

Background: Macrophages play a dual role in the tumor microenvironment(TME), capable of secreting pro-inflammatory factors to combat tumors while also promoting tumor growth through angiogenesis and immune suppression. This study aims to explore the characteristics of macrophages in lung adenocarcinoma (LUAD) and establish a prognostic model based on macrophage-related genes.

Method: We performed scRNA-seq analysis to investigate macrophage heterogeneity and their potential pseudotime evolutionary processes.

View Article and Find Full Text PDF

Integrated single-cell and bulk transcriptome analysis of R-loop score-based signature with regard to immune microenvironment, lipid metabolism and prognosis in HCC.

Front Immunol

January 2025

National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.

Background: Hepatocellular carcinoma (HCC) is one of the most prevalent causes of cancer-related morbidity and mortality worldwide. Late-stage detection and the complex molecular mechanisms driving tumor progression contribute significantly to its poor prognosis. Dysregulated R-loops, three-stranded nucleic acid structures associated with genome instability, play a key role in the malignant characteristics of various tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!