Integration of the large variety of genome maps from several organisms provides the mechanism by which physiological knowledge obtained in model systems such as the rat can be projected onto the human genome to further the research on human disease. The release of the rat genome sequence provides new information for studies using the rat model and is a key reference against which existing and new rat physiological results can be aligned. Previously, we described comparative maps of the rat, mouse, and human based on EST sequence comparisons combined with radiation hybrid maps. Here, we use new data and introduce the Integrated Genomics Environment, an extensive database of curated and integrated maps, markers, and physiological results. These results are integrated by using VCMapview, a java-based map integration and visualization tool. This unique environment allows researchers to relate results from cytogenetic, genetic, and radiation hybrid studies to the genome sequence and compare regions of interest between human, mouse, and rat. Integrating rat physiology with mouse genetics and clinical results from human by using the respective genomes provides a novel route to capitalize on comparative genomics and the strengths of model organism biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC383309PMC
http://dx.doi.org/10.1101/gr.1974504DOI Listing

Publication Analysis

Top Keywords

rat
8
rat physiology
8
mouse human
8
genome sequence
8
radiation hybrid
8
human
6
integrative genomics
4
genomics silico
4
silico coupling
4
coupling rat
4

Similar Publications

Respiratory diseases represent a significant healthcare burden, as evidenced by the devastating impact of COVID-19. Biophysical models offer the possibility to anticipate system behavior and provide insights into physiological functions, advancements which are comparatively and notably nascent when it comes to pulmonary mechanics research. In this context, an Inverse Finite Element Analysis (IFEA) pipeline is developed to construct the first continuously ventilated three-dimensional structurally representative pulmonary model informed by both organ- and tissue-level breathing experiments from a cadaveric human lung.

View Article and Find Full Text PDF

Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation.

J Biomed Mater Res B Appl Biomater

January 2025

Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.

In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities.

View Article and Find Full Text PDF

In Situ Self-Assembled Naringin/ZIF-8 Nanoparticle-Embedded Bacterial Cellulose Sponges for Infected Diabetic Wound Healing.

ACS Appl Mater Interfaces

January 2025

Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.

The treatment of diabetic foot ulcers (DFUs) represents a significant challenge due to the complexity of the wound microenvironment. Several factors, including infection, inflammation, and impaired angiogenesis, can complicate the healing process and reduce the effectiveness of current clinical treatments. To address these challenges, this work develops a multifunctional sponge containing a zeolitic imidazolate framework-8/bacterial cellulose (ZIF-8/BC) matrix loaded with the antioxidant naringin (Nar).

View Article and Find Full Text PDF

A Bioabsorbable Implant Seeded with Adipose-Derived Stem Cells for Adipose Regeneration.

Tissue Eng Part A

January 2025

Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Adipose tissue engineering requires effective strategies for regenerating adipose tissue, with adipose-derived stem cells (ASCs) being favored due to their robust self-renewal capacity and multipotent differentiation potential. In this study, the efficacy of poly-L-lactic acid (PLLA) mesh containing collagen sponge (CS), seeded with ASCs to promote adipose tissue formation, was investigated. PLLA-CS implants seeded with GFP-positive ASCs were inserted at high concentration (1 × 10 cells/implant, H-ASC) and low concentration (1 × 10 cells/implant, L-ASC), as were unseeded controls.

View Article and Find Full Text PDF

Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis.

ACS Chem Neurosci

January 2025

Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.

Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!