Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hypertrophic cardiomyopathy mutations A63V and E180G in alpha-tropomyosin (alpha-Tm) have been shown to cause slow cardiac muscle relaxation. In this study, we used two complementary genetic strategies, gene transfer in isolated rat myocytes and transgenesis in mice, to ascertain whether parvalbumin (Parv), a myoplasmic calcium buffer, could correct the diastolic dysfunction caused by these mutations. Sarcomere shortening measurements in rat cardiac myocytes expressing the alpha-Tm A63V mutant revealed a slower time to 50% relengthening (T50R: 44.2+/-1.4 ms in A63V, 36.8+/-1.0 ms in controls; n=96 to 108; P<0.001) when compared with controls. Dual gene transfer of alpha-Tm A63V and Parv caused a marked decrease in T50R (29.8+/-1.0 ms). However, this increase in relaxation rate was accompanied with a decrease in shortening amplitude (114.6+/-4.4 nm in A63+Parv, 137.8+/-5.3 nm in controls). Using an asynchronous gene transfer strategy, Parv expression was reduced (from approximately 0.12 to approximately 0.016 mmol/L), slow relaxation redressed, and shortening amplitude maintained (T50R=33.9+/-1.6 ms, sarcomere shortening amplitude=132.2+/-7.0 nm in A63V+PVdelayed; n=56). Transgenic mice expressing the E180G alpha-Tm mutation and mice expressing Parv in the heart were crossed. In isolated adult myocytes, the alpha-Tm mutation alone (E180G+/PV-) had slower sarcomere relengthening kinetics than the controls (T90R: 199+/-7 ms in E180G+/PV-, 130+/-4 ms in E180G-/PV-; n=71 to 72), but when coexpressed with Parv, cellular relaxation was faster (T90R: 36+/-4 ms in E180G+/PV+). Collectively, these findings show that slow relaxation caused by alpha-Tm mutants can be corrected by modifying calcium handling with Parv.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.RES.0000126923.46786.FD | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!