A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Parvalbumin corrects slowed relaxation in adult cardiac myocytes expressing hypertrophic cardiomyopathy-linked alpha-tropomyosin mutations. | LitMetric

Hypertrophic cardiomyopathy mutations A63V and E180G in alpha-tropomyosin (alpha-Tm) have been shown to cause slow cardiac muscle relaxation. In this study, we used two complementary genetic strategies, gene transfer in isolated rat myocytes and transgenesis in mice, to ascertain whether parvalbumin (Parv), a myoplasmic calcium buffer, could correct the diastolic dysfunction caused by these mutations. Sarcomere shortening measurements in rat cardiac myocytes expressing the alpha-Tm A63V mutant revealed a slower time to 50% relengthening (T50R: 44.2+/-1.4 ms in A63V, 36.8+/-1.0 ms in controls; n=96 to 108; P<0.001) when compared with controls. Dual gene transfer of alpha-Tm A63V and Parv caused a marked decrease in T50R (29.8+/-1.0 ms). However, this increase in relaxation rate was accompanied with a decrease in shortening amplitude (114.6+/-4.4 nm in A63+Parv, 137.8+/-5.3 nm in controls). Using an asynchronous gene transfer strategy, Parv expression was reduced (from approximately 0.12 to approximately 0.016 mmol/L), slow relaxation redressed, and shortening amplitude maintained (T50R=33.9+/-1.6 ms, sarcomere shortening amplitude=132.2+/-7.0 nm in A63V+PVdelayed; n=56). Transgenic mice expressing the E180G alpha-Tm mutation and mice expressing Parv in the heart were crossed. In isolated adult myocytes, the alpha-Tm mutation alone (E180G+/PV-) had slower sarcomere relengthening kinetics than the controls (T90R: 199+/-7 ms in E180G+/PV-, 130+/-4 ms in E180G-/PV-; n=71 to 72), but when coexpressed with Parv, cellular relaxation was faster (T90R: 36+/-4 ms in E180G+/PV+). Collectively, these findings show that slow relaxation caused by alpha-Tm mutants can be corrected by modifying calcium handling with Parv.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.RES.0000126923.46786.FDDOI Listing

Publication Analysis

Top Keywords

cardiac myocytes
8
myocytes expressing
8
parvalbumin corrects
4
corrects slowed
4
slowed relaxation
4
relaxation adult
4
adult cardiac
4
expressing hypertrophic
4
hypertrophic cardiomyopathy-linked
4
cardiomyopathy-linked alpha-tropomyosin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!