Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tumor progression due to loss of autocrine negative transforming growth factor-beta (TGF-beta) activity was reported in various cancers of epithelial origin. Estrogen receptor expressing (ER(+)) breast cancer cells are refractory to TGF-beta effects and exhibit malignant behavior due to loss or inadequate expression of TGF-beta receptor type II (RII). The exogenous TGF-beta effects on the modulation of cell cycle machinery were analyzed previously. However, very little is known regarding the endogenous control of cell cycle progression by autocrine TGF-beta. In this study, we have used a tetracycline regulatable RII cDNA expression vector to demonstrate that RII replacement reconstitutes autocrine negative TGF-beta activity in ER(+) breast cancer cells as evidenced by the delayed entry into S phase by the RII transfectants. Reversal of the delayed entry into S phase by the RII transfectants in the presence of tetracycline in addition to the decreased steady state transcription from a promoter containing the TGF-beta responsive element (p3TP-Lux) by TGF-beta neutralizing antibody treatment of the RII transfected cells confirmed that autocrine-negative TGF-beta activity was induced in the transfectants. Histone H1 kinase assays indicated that the delayed entry of RII transfectants into phase was associated with markedly reduced cyclin-dependent kinase (CDK)2 kinase activity. This reduction in kinase activity was due to the induction of CDK inhibitors p21/waf1/cip1 and p27/kip, and their association with CDK2. Tetracycline treatment of RII transfectants led to the suppression of p21/waf1/cip1and p27/kip expression, thus, directly demonstrating induction of CDK inhibitors by autocrine TGF-beta leading to growth control of ER(+) breast cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.can-03-2654 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!