Dermal exposure during filling, loading and brushing with products containing 2-(2-butoxyethoxy)ethanol.

Ann Occup Hyg

TNO Chemistry, Department of Chemical Exposure Assessment, PO Box 360, 3700 AJ Zeist, The Netherlands.

Published: April 2004

Introduction: Limited quantitative information is available on dermal exposure to chemicals during various industrial activities. Therefore, within the scope of the EU-funded RISKOFDERM project, potential dermal exposure was measured during three different tasks: filling, loading and brushing. DEGBE (2-(2-butoxyethoxy)ethanol) was used as a 'marker' substance to determine dermal exposure to the products that workers were handling.

Methods: Potential whole body exposure was measured using self-constructed cotton sampling pads on 11 body locations. Cotton gloves were used to determine the contamination of both hands. Bulk samples were collected to determine the concentration of DEGBE so as to be able to calculate exposure to the handled product.

Results: A total of 94 task-based measurements were performed, 30 on filling, 28 on loading and 36 on brushing, which resulted in potential dermal hand exposure to the handled product of 4.1-18 269 mg [geometric mean (GM) 555.4, n = 30], 0.3-27745 mg (GM 217.0, n = 28) and 11.3-733.3 mg (GM 98.4, n = 24) for each of the scenarios, respectively. Potential whole body exposure to the product during filling and loading ranged from 1.67 to 155.0 (GM 15.2, n = 9) and
Conclusion: Dermal exposure during filling and loading were of the same order of magnitude, while brushing resulted in much lower exposure levels, probably due to differences in work activities and work precision. For each of the scenarios, contamination was mainly found on the hands, representing up to 96% of the total exposure for filling. For filling and loading the most important source of variability in exposure was due to between-company variability rather than to either between-worker or within-worker variability. The pooled between-worker variability was the most important source of variability in dermal exposure levels for the brushing scenario.

Download full-text PDF

Source
http://dx.doi.org/10.1093/annhyg/meh008DOI Listing

Publication Analysis

Top Keywords

dermal exposure
16
filling loading
16
loading brushing
12
potential dermal
8
exposure measured
8
potential body
8
body exposure
8
exposure handled
8
exposure
7
dermal
5

Similar Publications

Massive Carbon Black Inhalation.

J Community Hosp Intern Med Perspect

January 2025

Departments of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.

Carbon black is the general term for a powdery commercial form of carbon. It can cause adverse health effects after inhalation, ingestion, or dermal contact. Exposure to carbon black particles can have adverse effects on the respiratory system; this exposure usually occurs when people inhale contaminated air in the workplace.

View Article and Find Full Text PDF

Surface water chemistry of the River Ganga at Varanasi was analyzed at 10 locations over 3 years (2019-2021) across pre-monsoon, monsoon, and post-monsoon seasons. The study aimed to assess water parameters using principal component analysis (PCA), calculate the water quality index (WQI), determine processes governing water chemistry, evaluate irrigation suitability, and estimate non-carcinogenic health risks. The physical parameters measured included pH (8.

View Article and Find Full Text PDF

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

Particulate matter (PM), particularly fine (PM) and ultrafine (PM) particles, originates from both natural and anthropogenic sources, such as biomass burning and vehicle emissions. These particles contain harmful compounds that pose significant health risks. Upon inhalation, ingestion, or dermal contact, PM can penetrate biological systems, inducing oxidative stress, inflammation, and DNA damage, which contribute to a range of health complications.

View Article and Find Full Text PDF

Phthalates are the emerging environmental toxicants derived from phthalic acid and its constituents, which are moderately present in plastics and many personal care products. Phthalate exposure occurs through various environmental factors, including air, water, and soil, with absorption facilitated via ingestion, inhalation, and dermal contact. Upon exposure, phthalates become bioavailable within the biological systems and undergo biotransformation and detoxification processes in the liver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!