The interaction of the local anesthetic benzocaine with the human erythrocyte membrane and molecular models is described. The latter consisted of isolated unsealed human erythrocyte membranes (IUM), large unilamellar vesicles (LUV) of dimyristoylphospatidylcholine (DMPC), and phospholipid multilayers of DMPC and dimyristoylphospatidyletanolamine (DMPE), representatives of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. Optical and scanning electron microscopy of human erythrocytes revealed that benzocaine induced the formation of echinocytes. Experiments performed on IUM and DMPC LUV by fluorescence spectroscopy showed that benzocaine interacted with the phospholipid bilayer polar groups and hydrophobic acyl chains. X-ray diffraction analysis of DMPC confirmed these results and showed that benzocaine had no effects on DMPE. The effect on sodium transport was also studied using the isolated toad skin. Electrophysiological measurements indicated a significant decrease in the potential difference (PD) and in the short-circuit current (Isc) after the application of benzocaine, reflecting inhibition of active ion transport.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2003.11.002DOI Listing

Publication Analysis

Top Keywords

human erythrocyte
16
erythrocyte membrane
12
local anesthetic
8
anesthetic benzocaine
8
benzocaine human
8
membrane molecular
8
molecular models
8
benzocaine
6
human
5
effects local
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!