Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The stereochemical outcome of the asymmetric Michael reaction of pseudoephedrine amide enolates changes dramatically in the presence of LiCl. Reaction of the enolate in the absence of LiCl results in formation of the anti Michael adduct with high selectivity, whereas in the presence of lithium chloride the syn adduct is favored. This method provides access to enantiomerically enriched trans-3,4-disubstituted delta-lactones from the anti Michael adducts by a two step reduction/lactonization sequence. Information obtained from NMR studies indicates that, under both enolization conditions, the (Z)-enolate is formed. A model to explain the turnover in selectivity based on NMR evidence is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo035564a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!