The walking movement of children of school age and adults can be regarded as very consistent. However, few studies have reported reliability of gait parameters in very young children that may be used as normative data for the clinical assessment of gait. In the present study, nine normal children of ages 10 to 21 mo. were assessed cross-sectionally using three-dimensional video analysis and digitization to assess within-day reliability of gait kinematics. Between-subject differences in gait kinematics were also examined. In addition, one child was assessed at the onset of independent walking and at monthly intervals thereafter to assess changes in gait kinematics during the first 8 mo. of autonomous walking. The case study allowed the acquisition of pilot data for longitudinal studies of this age group. 10 kinematics variables regarded as indicators of efficient walking were measured, and reliability was assessed using one-way analysis of variance and coefficient of variation. The study showed that all children produced reliable within-day results; however, the gait of each child was unique. In the case study, the between-month differences in gait kinematics were significant. The findings may be of clinical interest for pediatricians and child neurologists given the lack of normative data for this age group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2466/pms.98.1.123-130 | DOI Listing |
Exp Brain Res
January 2025
School of Rehabilitation Sciences, Université Laval, Quebec, Canada.
Navigating public environments requires adjustments to one's walking patterns to avoid stationary and moving obstacles. It is known that physical inactivity induces alterations in motor capacities, but the impact of inactivity on anticipatory locomotor adjustments (ALA) has not been studied. The purpose of the present exploratory study was to compare ALAs and related muscle co-contraction during a pedestrian circumvention task between active (AA) and inactive young adults (IA).
View Article and Find Full Text PDFSci Rep
January 2025
Chair of Applied Mechanics, Technical University of Munich, Garching, 85748, Germany.
Ankle push-off is important for efficient, human-like walking, and many prosthetic devices mimic push-off using motors or elastic elements. The knee is extended throughout the stance phase and begins to buckle just before push-off, with timing being crucial. However, the exact mechanisms behind this buckling are still unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
The current gold standard for the study of human movement is the marker-based motion capture system that offers high precision but constrained by costs and controlled environments. Markerless pose estimation systems emerge as ecological alternatives, allowing unobtrusive data acquisition in natural settings. This study compares the performance of two popular markerless systems, OpenPose (OP) and DeepLabCut (DLC), in assessing locomotion.
View Article and Find Full Text PDFGait Posture
January 2025
Department of Orthopaedics, BC Children's Hospital, 4500 Oak St, Vancouver, BC V6H 3N1, Canada; The Motion Lab, Sunny Hill Health Centre, 4480 Oak St, Vancouver, BC V6H 3N1, Canada; University of British Columbia, Faculty of Medicine, Department of Orthopaedics, 317 - 2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
Background: Split tendon transfer of the posterior tibialis (SPOTT) is a surgical procedure in which the split posterior tibialis tendon is transferred posterior to the fibula (PO) with insertion on the peroneus brevis tendon to rebalance the forces across the hindfoot. Routing of the split tendon through the interosseous membrane (IO) is a variation with the potential benefit of augmenting ankle dorsiflexion in swing.
Research Question: Does IO routing improve ankle dorsiflexion in swing and/or varus in stance compared to PO routing?
Methods: A retrospective chart review was completed to identify forty-two patients who underwent a SPOTT procedure for equinovarus foot deformity.
PLoS One
January 2025
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America.
Knee exoskeletons have been developed to assist, stabilize, or improve human movement or recovery. However, exoskeleton designers must implement transparency (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!