Thiopurine methyltransferase (TPMT) is an important enzyme in the metabolism of thiopurine medications such as azathioprine. In humans, activity varies widely among individuals, primarily because of genetic polymorphisms. Low TPMT activity increases the risk of myelosuppression from azathioprine and 6-mercaptopurine, whereas high TPMT activity is associated with poor drug efficacy. The purpose of this study was to determine whether dogs also show a wide range of TPMT activity. Heparinized blood samples were obtained from 177 dogs associated with a veterinary teaching hospital. Red blood cell (RBC) TPMT activity was measured by means of a modification of a radiochemical method as established for use in people. TPMT activity varied across a 9-fold range (7.9-71.8 U of RBC per milliliter; median, 21.7). Variation in TPMT activity was not associated with age, sex, or neutering status. Giant Schnauzers had much lower TPMT activity (7.9-20 U of RBC per milliliter; median, 13.1; P < .001) than did other breeds, and Alaskan Malamutes had much higher TPMT activity (22.7-71.8 U of RBC per milliliter; median, 36.0; P < .001) than did other breeds. Such variations in TPMT activity in the canine population and within groups of related dogs could affect thiopurine drug toxicity and efficacy in canine patients.

Download full-text PDF

Source
http://dx.doi.org/10.1892/0891-6640(2004)18<214:tmairb>2.0.co;2DOI Listing

Publication Analysis

Top Keywords

tpmt activity
36
rbc milliliter
12
milliliter median
12
activity
11
tpmt
10
thiopurine methyltransferase
8
red blood
8
activity associated
8
001 breeds
8
thiopurine
4

Similar Publications

Background: Thiopurine methyltransferase (TPMT) plays a crucial role in the detoxification of thiopurine drugs, including the antimetabolites azathioprine and 6-mercaptopurine (6-MP) used to treat autoimmune diseases and various cancers. These drugs interfere with DNA synthesis by inhibiting the production of purine-containing nucleotides, leading to the death of rapidly dividing cells. TPMT inactivates thiopurine drugs by methylating at the thiol group.

View Article and Find Full Text PDF

Efficacy and safety of azathioprine in patients with Cronkhite-Canada syndrome: a case series from Peking Union Medical College Hospital.

BMC Pharmacol Toxicol

December 2024

Department of Gastroenterology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.

Background: Cronkhite-Canada syndrome (CCS) is a rare non-hereditary chronic inflammatory disease characteristic of gastrointestinal polyps and ectodermal abnormalities. Corticosteroid therapy is the mainstay medication for CCS. Few studies indicated immunosuppressants might be the choices for patients with steroid refractory, steroid dependent or intolerant.

View Article and Find Full Text PDF

Introduction: Thiopurine drugs are metabolized by thiopurine methyltransferase (TPMT) and low TPMT activity can result in severe adverse drug reactions. Therefore, TPMT testing is recommended for individuals receiving thiopurines to reduce the risk of toxicity.

Objectives: The objectives of this study were to assess the rate of TPMT testing among individuals receiving thiopurines and explore factors associated with undergoing TPMT testing in Australia.

View Article and Find Full Text PDF
Article Synopsis
  • Azathioprine (AZA), commonly used for autoimmune disorders and organ transplants, shows potential for modern applications in viral, rheumatic, and skin diseases.
  • Advances in pharmacogenomics and nanotechnology may enhance AZA's effectiveness while reducing side effects, particularly by utilizing the active metabolites 6-mercaptopurine and 6-thioguanine.
  • The study suggests that personalized medicine approaches, including genetic testing and innovative drug delivery systems, can improve treatment outcomes for conditions like systemic lupus erythematosus and psoriasis.
View Article and Find Full Text PDF

Genetic profiling of in the Slovenian population.

Pharmacogenomics

November 2024

University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, Ljubljana, 1000, Slovenia.

Article Synopsis
  • This text discusses the use of pharmacogenomics to tailor thiopurine therapy based on genetic variants, initially focusing on its success in Asian populations but now recognized in European populations as well.
  • Researchers sequenced specific gene regions in Slovenian individuals to evaluate the pharmacogenetic role of variants related to thiopurine therapy for patients with acute lymphoblastic leukemia (ALL).
  • The study found several genetic variants, including one with known clinical relevance, but most variants were not linked to the dosage of thiopurines in ALL patients, suggesting the need for deeper studies in larger groups.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!