Discrimination and quantitation of the 20 positional isomers of C10-C13 linear alkyl benzenesulfonates (LASs), based on the use of reversed-phase liquid chromatography-electrospray ionisation in negative ion mode ion-trap mass spectrometry, was undertaken. Discrimination was achieved by LAS MS-MS analysis into the ion trap, by monitoring specific fragment ions resulting from the benzylic cleavage of the carbon alkyl chain on both side of the LAS phenyl group. Parameters affecting the electrospray ionisation source and the ion-trap operation were optimised. Calibration curves for the different isomers were established and this permitted their quantitation by mass spectrometry for the first time. MS-MS responses were dependent on both the position of the phenyl group on the alkyl chain and the length of this alkyl chain, these responses being higher for the external isomers and the longer alkyl chain homologues. The precision, expressed as relative standard deviation ranged between 9 and 13%. Detection limits for LAS isomers were between 0.03 and 0.07 mg/l and therefore the method is sensitive enough to be applied to environmental samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2003.08.071 | DOI Listing |
Heliyon
January 2025
The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda.
Isoxazole and oxadiazole derivatives inhibiting 3-hydroxykynurenine transaminase (3HKT) are potential larvicidal candidates. This study aims to identify more suited potential inhibitors of 3HKT (3HKT) through molecular docking and molecular dynamics simulation. A total of 958 compounds were docked against 3HKT (PDB ID: 2CH2) using Autodock vina and Autodock4.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Lab of Paper Science and Technology of Ministry of Elucation, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China. Electronic address:
Environmental pollution and health problems caused by traditional non-degradable fossil-based plastics are significant concerns, rendering green and renewable bio-based materials, such as cellulose and C-Priamine (1074), as attractive substitutes. In particular, the low plasticity of cellulose can be optimized using soft alkyl chains. Herein, multifunctional cellulose-based materials were constructed via covalent adaptable networks using the Schiff base reaction of oxidized microcrystalline cellulose with varying aldehyde (dialdehyde cellulose (DAC)) contents and C-Priamine (1074).
View Article and Find Full Text PDFJ Chromatogr A
January 2025
State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China. Electronic address:
Sulfate and sulfonate compounds are extensively used as anionic surfactants in personal care products (PCPs), which might pose adverse potential to human health. However, available research mostly identified certain subsets of sulfated and sulfonated surfactants based on target analysis. In this study, we developed a comprehensive nontarget strategy for identification of sulfated and sulfonated surfactants in PCPs using UHPLCHRMS supplemented by an in-lab R script based on characteristic fragment ions and sulfur isotope patterns.
View Article and Find Full Text PDFMolecules
January 2025
School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia.
DNA methylation has been widely studied with the goal of correlating the genome profiles of various diseases with epigenetic mechanisms. Multiple approaches have been developed that employ extensive steps, such as bisulfite treatments, polymerase chain reactions (PCR), restriction digestion, sequencing, mass analysis, etc., to identify DNA methylation.
View Article and Find Full Text PDFMolecules
January 2025
Centro de Investigação em Química (CIQUP), Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
An extensive thermochemical study of γ-undecanolactone and δ-undecanolactone has been developed using two complementary calorimetric techniques. The combustion energy of each compound was determined by static-bomb combustion calorimetry, and the corresponding enthalpy of vaporization was determined by high-temperature Calvet microcalorimetry, in which both properties of each compound are reported at = 298.15 K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!