A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interaction kinetics of the copper-responsive CopY repressor with the cop promoter of Enterococcus hirae. | LitMetric

In Enterococcus hirae, copper homeostasis is controlled by the cop operon, which encodes the copper-responsive repressor CopY, the copper chaperone CopZ, and two copper ATPases, CopA and CopB. The four genes are under control of CopY, which is a homodimeric zinc protein, [Zn(II)CopY]2. It acts as a copper-responsive repressor: when media copper is raised, CopY is released from the DNA, allowing transcription to proceed. This involves the conversion of [Zn(II)CopY]2 to [Cu(I)2CopY]2, which is no longer able to bind to the promoter. Binding analysis of [Zn(II)CopY]2 to orthologous promoters and to control DNA by surface plasmon resonance analysis defined the consensus sequence TACAnnTGTA as the repressor binding element, or " cop box", of Gram-positive bacteria. Association and dissociation rates for the CopY-DNA interaction in the absence and presence of added copper were determined. The dissociation rate of [Zn(II)CopY]2 from the promoter was 7.3 x 10(-6) s(-1) and was increased to 5 x 10(-5) s(-1) in the presence of copper. This copper-induced change may be the underlying mechanism of copper induction. Induction of the cop operon was also assessed in vivo with a biosensor containing a lux reporter system under the control of the E. hirae cop promoter. Half-maximal induction of this biosensor was observed at 5 microM media copper, which delineates the ambient copper concentration to which the cop operon responds in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00775-004-0536-1DOI Listing

Publication Analysis

Top Keywords

cop operon
12
copper
9
cop promoter
8
enterococcus hirae
8
copper-responsive repressor
8
media copper
8
presence copper
8
cop
6
interaction kinetics
4
kinetics copper-responsive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!