A major drawback of current approaches to antiangiogenic gene therapy is the lack of tissue-specific targeting. The aim of this work was to trigger endothelial cell-specific apoptosis, using adenoviral vector-mediated delivery of a chimeric death receptor derived from the modified endothelium-specific pre-proendothelin-1 (PPE-1) promoter. In the present study, we constructed an adenovirus-based vector that targets tumor angiogenesis. Transcriptional control was achieved by use of a modified endothelium-specific promoter. Expression of a chimeric death receptor, composed of Fas and TNF receptor 1, resulted in specific apoptosis of endothelial cells in vitro and sensitization of cells to the proapoptotic effect of TNF-alpha. The antitumoral activity of the vectors was assayed in two mouse models. In the model of B16 melanoma, a single systemic injection of virus to the tail vein caused growth retardation of tumor and reduction of tumor mass with central tumor necrosis. When the Lewis lung carcinoma lung-metastasis model was applied, i.v. injection of vector resulted in reduction of lung-metastasis mass, via an antiangiogenic mechanism. Moreover, by application of the PPE-1-based transcriptional control, a humoral immune response against the transgene was avoided. Collectively, these data provide evidence that transcriptionally controlled, angiogenesis-targeted gene therapy is feasible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC379319PMC
http://dx.doi.org/10.1172/JCI20007DOI Listing

Publication Analysis

Top Keywords

gene therapy
12
tumor angiogenesis
8
chimeric death
8
death receptor
8
modified endothelium-specific
8
transcriptional control
8
tumor
5
transcription-controlled gene
4
therapy tumor
4
angiogenesis major
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!