The kinetochore (centromeric DNA and associated proteins) mediates the attachment of chromosomes to the mitotic spindle apparatus and is required for faithful chromosome transmission. We established that evolutionarily conserved Saccharomyces cerevisiae SPT4, previously identified in genetic screens for defects in chromosome transmission fidelity (ctf), encodes a new structural component of specialized chromatin at kinetochores and heterochromatic loci, with roles in kinetochore function and gene silencing. Using chromatin immunoprecipitation assays (ChIP), we determined that kinetochore proteins Ndc10p, Cac1p, and Hir1p are required for the association of Spt4p to centromeric (CEN) loci. Absence of functional Spt4p leads to altered chromatin structure at the CEN DNA and mislocalization of the mammalian CENP-A homolog Cse4p to noncentromeric loci. Spt4p associates with telomeres (TEL) and HMRa loci in a Sir3p-dependent manner and is required for transcriptional gene silencing. We show that a human homolog of SPT4 (HsSPT4) complements Scspt4-silencing defects and associates with ScCEN DNA in an Ndc10p-dependent manner. Our results highlight the evolutionary conservation of pathways required for genome stability in yeast and humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC394231PMC
http://dx.doi.org/10.1038/sj.emboj.7600161DOI Listing

Publication Analysis

Top Keywords

evolutionarily conserved
8
saccharomyces cerevisiae
8
chromosome transmission
8
gene silencing
8
functional roles
4
roles evolutionarily
4
spt4p
4
conserved spt4p
4
spt4p centromeres
4
centromeres heterochromatin
4

Similar Publications

Nociception is the process by which sensory neurons detect and encode potentially harmful environmental stimuli to generate behavioral responses. Nociceptor neurons exhibit plasticity in which their sensitivity to noxious stimuli and subsequent ability to drive behavior may be altered by environmental conditions, injury, infection, and inflammation. In some cases, nociceptor sensitization requires regulated changes in gene expression, and recent studies have indicated roles for post-transcriptional mechanisms in regulating these changes as an aspect of nociceptor plasticity.

View Article and Find Full Text PDF

Overexpressing OsNF-YB12 elevated the content of jasmonic acid and impaired drought tolerance in rice.

Plant Sci

January 2025

Shanghai Agrobiological Gene Center, Shanghai, 201106 China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China. Electronic address:

Nuclear factor Y (NF-Y) is an evolutionarily conserved heterotrimeric transcription factor in eukaryotes. In a previous study, OsNF-YB12 was confirmed to be associated with drought tolerance using the Ecotilling method. In this study, real-time quantitative RT-PCR revealed that OsNF-YB12 was induced by various abiotic stresses and phytohormones, with expression levels differing between leaves and roots.

View Article and Find Full Text PDF

Regulation of gene expression helps determine various phenotypes in most cellular life forms. It is orchestrated at different levels and at the point of transcription initiation by transcription factors (TFs). TFs bind to DNA through domains that are evolutionarily related, by shared membership of the same superfamilies (TF-SFs), to those found in other nucleic acid binding and protein-binding functions (nTFs for non-TFs).

View Article and Find Full Text PDF

Bisphenol A, an endocrine-disrupting compound, is widely used in the industrial production of plastic products. Despite increasing concerns about its harmful effects on human health, animals, and the environment, the use of BPA has been banned only in infant products, and its effects on cellular processes are not fully understood. To investigate the impact of BPA on eukaryotic cells, we analyzed the proteome changes of wild-type and -deleted strains exposed to different doses of BPA using sample multiplexing-based proteomics.

View Article and Find Full Text PDF

Suppression of Nodule Formation by RNAi Knock-Down of in .

Genes (Basel)

January 2025

Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.

Background/objectives: The balanced regulation of innate immunity plays essential roles in rhizobial infection and the establishment and maintenance of symbiosis. The evolutionarily conserved cell death suppressor Bax inhibitor-1 plays dual roles in nodule symbiosis, providing a valuable clue in balancing immunity and symbiosis, while it remains largely unexplored in the legume .

Methods/results: In the present report, the gene family of was identified and characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!