To improve the utility of herpes simplex virus type 1 (HSV-1) vectors for gene therapy, the viral envelope needs to be manipulated to achieve cell-specific gene delivery. In this report, we have engineered an HSV-1 mutant virus, KgBpK(-) gC(-), deleted for the glycoprotein C (gC) and the heparan sulfate-binding domain (pK) of gB, in order to express gC:preS1 and gC:preS1 active peptide (preS1ap) fusion molecules. PreS1, and a 27 amino acid active peptide inside preS1 (preS1ap), are supposed to be the molecules that the human hepatitis B virus (HBV) needs to bind specifically to hepatocytes. Biochemical analysis demonstrated that the gC:preS1ap fusion molecule was expressed and incorporated into the envelope of the recombinant HSV-1 virus KgBpK(-)gC:preS1ap. Moreover, KgBpK(-)gC:preS1ap recombinant virus gained a specific binding activity to an hepatoblastoma cell line (HepG2) with a consequent productive infection. In addition, anti-preS1-specific antibodies were shown to neutralize recombinant virus infectivity, and a synthetic preS1ap peptide was able to elute KgBpK(-)gC:preS1ap virus bound on HpeG2 cells. These data provide further evidence that HSV-1 can productively infect cells through a specific binding to a non-HSV-1 receptor. Furthermore, these data strongly support the hypothesis that the HBV preS1ap molecule is an HBV ligand to hepatocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.gt.3302266 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!