CYP2E1 and CYP4A11 are cytochrome P450 enzymes that are regulated by physiological conditions including diabetes and fasting. In addition, the xenochemical clofibrate has been reported to induce both rodent CYP2E1 and CYP4A. These findings suggest similar modes of regulation. Also in common to both enzymes is the ability to metabolize fatty acids such as laurate and arachidonic acid. Here, we used primary cultures of human hepatocytes to determine if certain xenochemicals could regulate CYP2E1 and CYP4A11. Ethanol significantly (p < 0.05) increased expression of CYP2E1 mRNA by 216 +/- 32% of control, but did not alter CYP4A11 mRNA accumulation (145 +/- 22% of control). In contrast, hepatocytes exposed to ethanol exhibited only a slight elevation in CYP2E1 protein (122 +/- 13% of control) and a negligible effect on CYP4A11 protein. Clofibrate significantly (p < 0.05) enhanced both CYP4A11 mRNA and protein by 239 +/- 30% and 154 +/- 10% of control, respectively, but did not increase CYP2E1. Because rodent CYP4A is reportedly regulated by fatty acids through peroxisome proliferator activated receptor alpha (PPARalpha) and CYP2E1 is induced by high fat diets, we examined the effects of a medium chain fatty acid, palmitate on CYP2E1 mRNA content. Palmitic acid significantly (p < 0.05) increased CYP2E1 mRNA to 326 +/- 57% of control. Collectively, results presented here identify agents that enhance CYP2E1 and CYP4A11 at the transcription level and suggest that fatty acids may represent a similar mode of regulation for these P450 enzymes. The lack of induction of CYP2E1 protein by ethanol in human hepatocytes indicates that for certain P450 enzymes, isolated hepatocytes may not be an adequate tool for predicting in vivo responses.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfh126DOI Listing

Publication Analysis

Top Keywords

human hepatocytes
12
cyp2e1 cyp4a11
12
p450 enzymes
12
fatty acids
12
cyp2e1 mrna
12
cyp2e1
11
palmitic acid
8
primary cultures
8
cultures human
8
005 increased
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!