In the present study an oily wastewater from the lubricant unit of a petroleum company was evaluated by combining the sequence photo-assisted oxidation-Pseudomonas putida DSM 437. The wastewater contained various alcohols, acids and phenolic compounds. From the above mentioned compounds the biodegradation of ethylene glycol, phenol, o-cresol and p-cresol was examined. The direct biodegradation of the wastewater using P. putida DSM 437 resulted in 85% ethylene glycol assimilation while phenol, o-cresol and p-cresol assimilation was in the range of 27% to 40%. In order to increase the degradation of the phenolic compounds photo-assisted oxidation was applied to the wastewater using UV/ H2O2 its a pretreatment step to biological degradation. Fc(III) were used in order to accelerate the formation of the hydroxyl radicals and consequently the overall photo-oxidation process. The addition of Fe(III) ions resulted in 30% decrease of COD within the first 10 min while the respected value without iron ions was 5%. The combined photo-assisted oxidation and biodegradation of the wastewater resulted in 100% removal of ethylene glycol. The overall degradation of phenol was 78% while the 59% and 84% of the initial o-cresol and p-cresol respectively, were removed from the wastewater. The combined process resulted in 72% of COD removal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1081/ese-120027738 | DOI Listing |
ChemSusChem
January 2025
Kunming University of Science and Technology, Faculty of Metallurgical and Energy Engineering, No. 68 Wenchang Road, 121 Street, 650093, Kunming, CHINA.
Efficient recovery of metals from secondary resources is essential to address resource shortages and environmental crises. The development of a cheap, environmentally friendly, and highly efficient recovery pathway is essential for resource retrieval. In this study, we propose a high-efficiency extraction approach utilizing bis(2,4,4-trimethylpentyl) phosphonic acid (Cyanex272) to recover cobalt from waste choline chloride/ethylene glycol (Ethaline) electrolyte containing Co(II) ions.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
The fermentative production of valuable chemicals from lignocellulosic feedstocks has attracted considerable attention. Although Saccharomyces cerevisiae is a promising microbial host, it lacks the ability to efficiently metabolize xylose, a major component of lignocellulosic feedstocks. The xylose oxidative pathway offers advantages such as simplified metabolic regulation and fewer enzymatic steps.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India.
Despite advancements in chronic arthritis treatment, there remains a significant demand for advanced nanotechnologies capable of efficiently delivering a wide range of therapeutic agents to provide symptomatic relief and facilitate the healing of inflamed cartilage tissue. Considering the significant impact of hypoxia on the development and maintenance of chondral tissue, replicating its effects on stem cells could be a potential approach for the treatment of osteoarthritis (OA). Cobalt is a prominent hypoxia-inducing agent, owing to its ability to activate the hypoxia-inducible factor (HIF) pathway regardless of cellular oxygen levels.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Solar-powered electrochemical NH synthesis offers the benefits of sustainability and absence of CO emissions but suffers from a poor solar-to-ammonia yield rate (SAY) due to a low NH selectivity, large bias caused by the sluggish oxygen evolution reaction, and low photocurrent in the corresponding photovoltaics. Herein, a highly efficient photovoltaic-electrocatalytic system enabling high-rate solar-driven NH synthesis was developed. A high-performance Ru-doped Co nanotube catalyst was used to selectively promote the nitrite reduction reaction (NORR), exhibiting a faradaic efficiency of 99.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Road 26, Shijiazhuang 050080, PR China.
The development of silk fibroin-based hydrogels with excellent biocompatibility, aqueous processability, and facile controllability in structure is indeed an exciting advancement for biological research and strain sensor applications. However, silk fibroin-based hydrogel strain sensors that combine high conductivity, high stretchability, reusability, and high selectivity are still desired. Herein, we report a simple method for preparing double-network hydrogels including silk fibroin and poly(acrylic acid) sodium-polyacrylate (PAA-PAAS) networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!