Incorporation of 1-chlorooctadecane into FA and beta-hydroxy acids of Marinobacter hydrocarbonoclasticus.

Lipids

Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 7573, Ecole Nationale Supérieure de Chimie de Paris, 75231 Paris cedex 05, France.

Published: January 2004

The lipids of the gram-negative marine bacterium Marinobacter hydrocarbonoclasticus, cultivated in synthetic seawater supplemented with 1-chlorooctadecane as sole source of carbon, were isolated, purified, and their structures determined. Three pools of lipids were isolated according to the sequential procedure used: unbound lipids extracted by organic solvents, ester-bound lipids released under alkaline conditions, and amide-bound lipids released by acid hydrolysis. FA isolated from the unbound lipids included omega-chlorinated (21%, w/w, of this fraction; C16 predominant) and nonchlorinated compounds (22%, w/w; C18 predominant). These acids were accompanied by a high proportion of omega-chloro-C18 alcohols (43%, w/w) and a lower amount of omega-chloro-beta-hydroxy-C18, -C16, and -C14 acids (5%, w/w). These data, together with the isolation from the culture medium of gamma-butyrolactone, suggested a metabolism of 1-chlorooctadecane through oxidation into omega-chloro acid and then the classic beta-oxidation pathway. The analysis of the ester-bound and amide-bound lipids revealed that significant amounts of omega-chloro-beta-hydroxy C10-C12 acids were incorporated into the lipopolysaccharides of the bacterium. Incorporation of these omega-chloro-beta-hydroxy acids into the lipopolysaccharides represents a novel route for chloroalkane assimilation in hydrocarbonoclastic gram-negative bacteria. The formation of chlorinated hydroxy acids, like the omega-chloro FA in the cellular lipids, could account for an incomplete mineralization of chloroparaffins in the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11745-004-1204-8DOI Listing

Publication Analysis

Top Keywords

marinobacter hydrocarbonoclasticus
8
lipids
8
unbound lipids
8
lipids released
8
amide-bound lipids
8
acids
6
incorporation 1-chlorooctadecane
4
1-chlorooctadecane beta-hydroxy
4
beta-hydroxy acids
4
acids marinobacter
4

Similar Publications

Novel metabolite madeirone and neomarinone extracted from as marine antibiofilm and antifouling agents.

Front Chem

July 2024

Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal.

Biofouling poses a significant economic threat to various marine industries, leading to financial losses that can reach billions of euros annually. This study highlights the urgent need for effective alternatives to traditional antifouling agents, particularly following the global ban on organotin compounds. PTM-346 was isolated from sediment samples on the shores of the Madeira Archipelago, Portugal.

View Article and Find Full Text PDF

The dissolved organic matter (DOM) released from the cocoolithophores () was studied in laboratory experiments after co-culturing with bacteria. (CA6)--Proteobacteria and (CF2) were used to investigate the utilization and processing of the DOM derived from , utilizing fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (EEM-PARAFAC), while measuring algal abundance and photosynthetic parameters. The experimental groups consisted of axenic groups, filter cultured with bacteria (CA6 or CF2) groups, co-cultured with bacteria (CA6 or CF2) groups and axenic bacteria (CA6 or CF2) groups.

View Article and Find Full Text PDF

Effects of Ion Combinations and Their Concentrations on Denitrification Performance and Gene Expressions of an Aerobic Strain Marinobacter Hydrocarbonoclasticus RAD-2.

Microorganisms

July 2023

Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.

Salinity is one of the most important factors affecting the nitrogen-removal efficiency of denitrifying bacteria. A series of different ion combinations and salinity gradients were carried out to clarify the effects of ion types and concentrations on nitrogen removal by halophilic aerobic denitrifying bacteria RAD-2. Nitrate concentrations, nitrite concentrations, TAN concentrations, and OD were monitored to investigate their effects on denitrification in each group.

View Article and Find Full Text PDF

Metabolic engineering of Corynebacterium glutamicum for fatty alcohol production from glucose and wheat straw hydrolysate.

Biotechnol Biofuels Bioprod

July 2023

Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, 94315, Straubing, Germany.

Background: Fatty acid-derived products such as fatty alcohols (FAL) find growing application in cosmetic products, lubricants, or biofuels. So far, FAL are primarily produced petrochemically or through chemical conversion of bio-based feedstock. Besides the well-known negative environmental impact of using fossil resources, utilization of bio-based first-generation feedstock such as palm oil is known to contribute to the loss of habitat and biodiversity.

View Article and Find Full Text PDF

Influence of Cupric (Cu) Ions on the Iron Oxidation Mechanism by DNA-Binding Protein from Starved Cells (Dps) from .

Int J Mol Sci

June 2023

UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.

Dps proteins (DNA-binding proteins from starved cells) are multifunctional stress defense proteins from the Ferritin family expressed in Prokarya during starvation and/or acute oxidative stress. Besides shielding bacterial DNA through binding and condensation, Dps proteins protect the cell from reactive oxygen species by oxidizing and storing ferrous ions within their cavity, using either hydrogen peroxide or molecular oxygen as the co-substrate, thus reducing the toxic effects of Fenton reactions. Interestingly, the interaction between Dps and transition metals (other than iron) is a known but relatively uncharacterized phenomenon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!