The hydroxo compounds [Re(OH)(CO)(3)(N-N)] (N-N=bipy, 2 a; Me(2)-bipy, 2 b) were prepared in a biphasic H(2)O/CH(2)Cl(2) medium by reaction of [Re(OTf)(CO)(3)(N-N)] with KOH. In contrast, when anhydrous CH(2)Cl(2) was used, the binuclear hydroxo-bridged compound [[Re(CO)(3)(bipy)](2)(mu-OH)]OTf (3-OTf) was obtained. Compound [Re(OH)(CO)(3)(Me(2)-bipy)] (2 b) reacted with phenyl acetate or vinyl acetate to afford [Re(OAc)(CO)(3)(Me(2)-bipy)] (4) and phenol or acetaldehyde, respectively. The reactions of [Mo(OH)(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (1), 2 a, and 2 b toward several unsaturated organic electrophiles were studied. The reaction of 1 with (p-tolyl)isocyanate afforded an adduct of N,N'-di(p-tolyl)urea and the carbonato-bridged compound [[Mo(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)](2)(mu-eta(1)(O),eta(1)(O)-CO(3))] (5). In contrast, the reaction of 2 a with phenylisocyanate afforded [Re(OC(O)NHPh)(CO)(3)(bipy)] (6); this results from formal PhNCO insertion into the O-H bond. On the other hand, compounds [Mo[SC(O)NH(p-tolyl)](eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (7), [Re[SC(O)NH(p-tolyl)](CO)(3)(Me(2)-bipy)] (8 a), and [Re[SC(O)NHEt](CO)(3)(Me(2)-bipy)] (8 b) were obtained by reaction of 1 or 2 b with the corresponding alkyl or aryl isothiocyanates. In those cases, RNCS was inserted into the M-O bond. The reactions of 1, 2 a, and 2 b with dimethylacetylenedicarboxylate (DMAD) gave the complexes [Mo[C(OH)-C(CO(2)Me)C(CO(2)Me)-O](eta(3)-C(3)H(4)-Me-2)(CO)(phen)] (9) and [Re[C(OH)C(CO(2)Me)C(CO(2)Me)O](CO)(2)(N-N)] (N-N=bipy, 10 a; Me(2)-bipy, 10 b). The molecules of these compounds contain five-membered metallacycles that are the result of coupling between the hydroxo ligand, DMAD, and one of the CO ligands. The new compounds were characterized by a combination of IR and NMR spectroscopy, and for [[Re(CO)(3)(bipy)(2)(mu-OH)]BF(4) (3-BF(4)), 4, 5, 6, 7, 8 b, 9, and 10 b, also by means of single-crystal X-ray diffraction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200305577 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!