Event-related potentials (ERPs) provide a critical link between the hemodynamic response, as measured by functional magnetic resonance imaging, and the dynamics of the underlying neuronal activity. Single-trial ERP recordings capture the oscillatory activity that are hypothesized to underlie both communication between brain regions and amplified processing of behaviorally relevant stimuli. However, precise interpretations of ERPs are precluded by uncertainty about their neural mechanisms. One influential theory holds that averaged sensory ERPs are generated by partial phase resetting of ongoing electroencephalographic oscillations, while another states that ERPs result from stimulus-evoked neural responses. We formulated critical predictions of each theory and tested these using direct, intracortical analyses of neural activity in monkeys. Our findings support a predominant role for stimulus-evoked activity in sensory ERP generation, and they outline both logic and methodology necessary for differentiating evoked and phase resetting contributions to cognitive and motor ERPs in future studies.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhh009DOI Listing

Publication Analysis

Top Keywords

phase resetting
8
erps
5
neural
4
neural dynamics
4
dynamics fundamental
4
fundamental mechanisms
4
mechanisms event-related
4
event-related brain
4
brain potentials
4
potentials event-related
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!