Surface chemical analysis of carbohydrate materials used for chromatography media by time-of-flight secondary ion mass spectrometry.

Anal Chem

Department of Chemistry and Materials Technology, SP Swedish National Testing and Research Institute, P.O. Box 857, SE-50115 Borås, Sweden, and Research and Development, Amersham Biosciences AB, SE-751 84 Uppsala, Sweden.

Published: April 2004

The surface chemical structure of two raw materials (agarose and dextran) and four base matrixes used in the manufacture of chromatography media were analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The results show that the small differences in molecular structure between these materials result in significant differences in the TOF-SIMS spectra and that these differences can be identified and quantified using either of two different approaches. In a novel approach, fragment ion distributions were extracted from the TOF-SIMS spectra for each material, providing an immediate and systematic overview of the spectral features. Difference fragment distributions were used to highlight spectral differences between the materials. The results of the fragment ion distribution analysis, in terms of identification and quantification of spectral variations between different materials, were found to be in agreement with the results from a principal component analysis using the same set of data. Both methods were found capable of (i) distinguishing between agarose and dextran and (ii) detecting and quantifying the degree of cross-linking present in the four base matrix materials. In addition, using a deuterated chemical cross-linker, it was possible to identify spectral features specifically connected to the cross-link molecular structure.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac035457gDOI Listing

Publication Analysis

Top Keywords

surface chemical
8
chromatography media
8
time-of-flight secondary
8
secondary ion
8
ion mass
8
mass spectrometry
8
agarose dextran
8
molecular structure
8
tof-sims spectra
8
fragment ion
8

Similar Publications

Probing Surface Reactions on Multicomponent Glass Using Reflection-Absorption Infrared Spectroscopy.

Langmuir

January 2025

Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The chemical reactivity of glass surfaces is often studied with elemental analysis techniques, and although such characterization methods provide insights on compositional changes from exposure to specific chemical conditions, molecule-specific chemical reactions are not determined unambiguously. This study demonstrates the use of reflection-absorption infrared spectroscopy (RAIRS) to detect molecular species on alkali-free boroaluminosilicate and alkali aluminosilicate glasses, using acetic acid vapor as a model reactant to probe reaction sites at the surface with or without pretreatment by aqueous solutions of varied pH. With the assistance of the theoretical calculation of spectral changes based on refractive indices of bulk materials, it was possible to identify the molecular species being removed and produced at the glass surface.

View Article and Find Full Text PDF

Cellulose Elementary Fibrils as Deagglomerated Binder for High-Mass-Loading Lithium Battery Electrodes.

Nanomicro Lett

January 2025

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.

Amidst the ever-growing interest in high-mass-loading Li battery electrodes, a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways. Here, we propose cellulose elementary fibrils (CEFs) as a class of deagglomerated binder for high-mass-loading electrodes. Derived from natural wood, CEF represents the most fundamental unit of cellulose with nanoscale diameter.

View Article and Find Full Text PDF

Photoinitiated Thiol-Ene Click Reaction for Preparation of Highly Adhesive and Mechanically Stable Silicone Coatings for Marine Antifouling and Anticorrosion.

ACS Appl Mater Interfaces

January 2025

Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.

Marine biofouling and corrosion have become the main problems affecting the development of the marine industry. Silicone-based coatings have been widely used for antifouling and anticorrosion due to their low surface energy. However, the poor adhesion and low mechanical stability of these materials limit their application in complex marine environments.

View Article and Find Full Text PDF

Impact of a lagoon with high anthropic activity on a World Heritage Site.

Environ Monit Assess

January 2025

Department of Earth Science, University of Bizerte-FSB, University of Carthage, 7120, Bizerte, Tunisia.

The Ichkeul-Bizerte Lagoon Complex (IBLC), a critical ecosystem for local biodiversity, faces a pressing threat due to climate change and severe pollution. Despite past conservation efforts, pollution persists, particularly in the Bizerte Lagoon. This study investigated the impact of water dynamics and climatic conditions on heavy metal contamination in the IBLC's sediments.

View Article and Find Full Text PDF

In polymerization-induced phase separation, the impact of polymer-substrate interaction on the dynamics of phase separation for polymer blends is important in determining the final morphology and properties of polymer materials as the surface can act as another driving force for phase separation other than polymerization. We modify the previously-developed polymerizing Cahn-Hilliard (pCH) method by adding a surface potential to model the phase separation behavior of a mixture of two species independently undergoing linear step-growth polymerization in the presence of a surface. In our approach, we explicitly model polydispersity by separately considering different molecular-weight components with their own respective diffusion constants, and with the surface potential preferentially acting on only one species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!