The helix-sense selective polymerization of achiral monomers by homochiral catalysts was investigated. Polymerization of chiral carbodiimides (N-(R)-2,6-(dimethylheptyl)-N'-phenylcarbodiimide) by achiral catalysts yields polymers that undergo mutorotation at elevated temperatures, thus illustrating that these chains are formed under kinetic rather than thermodynamic control. Building on this observation, the polymerization of achiral carbodiimides by (S-BINOL)Ti(OiPr)2, I, was studied. Monomers (N-hexyl-N'-(X)carbodiimide, where X = isopropyl (3), hexyl (4) or phenyl (5)), N-methyl-N'-(2-methyl-6-isopropylphenyl)carbodiimide, 6, and N-dodecyl-N'-(1-naphthyl)carbodiimide, 7, were all polymerized with I in good yields (86-95%), and all showed varying degrees of asymmetric induction. Poly-3, -4, and -5 racemized upon heating at elevated temperatures, but poly-6 and poly-7, bearing nonsymmetric phenyl groups, yielded optically active polymers that could not be racemized even at elevated temperatures. Thin films of poly-7 were found to be highly opalescent.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja049548mDOI Listing

Publication Analysis

Top Keywords

elevated temperatures
12
helix-sense selective
8
selective polymerization
8
optically active
8
active polymers
8
achiral monomers
8
polymerization achiral
8
polymerization
4
polymerization carbodiimides
4
carbodiimides building
4

Similar Publications

Newly identified SpoVAF/FigP complex: the role in spore germination at moderate high pressure and influencing factors.

Appl Environ Microbiol

January 2025

College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China.

Unlabelled: The SpoVAF/FigP complex, a newly identified dormant spore ion channel, has been shown to amplify the response of germinant receptors (GRs) to nutrient germinants. However, its contribution to high-pressure-induced germination remains unexplored. In this study, we discovered that the 5AF/FigP complex played an important role in the GR-dependent germination of spores under moderate high pressure (MHP) by facilitating the release of ions, such as potassium (K), a mechanism in parallel with its role in nutrient-induced germination.

View Article and Find Full Text PDF

The SiO electrode interface is passivated with a SiO layer, which hinders the deposition of an inorganic solid electrolyte interphase (SEI) due to its high surface work function and low exchange current density of electrolyte decomposition. Consequently, a thermally vulnerable, organic-based SEI formed on the SiO electrode, leading to poor cycling performance at elevated temperatures. To address this issue, the SEI formation process is thermoelectrochemically activated.

View Article and Find Full Text PDF

This study aimed to determine the effects of elevated carbon dioxide (eCO) and temperature (eT) on the phytochemical and nutritional parameters of legumes. Field experiments were conducted using black gram ( L.), green gram ( L.

View Article and Find Full Text PDF

One of the best and most advanced methods for disposal of urban, hospital, industrial, and other hazardous waste is to convert waste into combustible gases in reactors based on plasma arc technology. Also used for renewable energy generation, this technology involves thermal treatment without a combustion process; therefore, the waste is completely decomposed into simple molecules in a near vacuum environment almost devoid of Oxygen at elevated temperatures. The present research uses a thermal transferred arc plasma reactor to conduct a feasibility study on the pyrolysis of three types of wastes: Antar, Orthotoluenediamine (OTD), and Tar.

View Article and Find Full Text PDF

Molecular dynamics simulation of CL-20 based high temperature resistant PBX.

J Mol Model

January 2025

Shanxi Jiangyang Chemical Industry Corporation, Taiyuan, 030041, Shanxi, China.

Context: To address the issue that the output charge in existing Deflagration to Detonation Transition (DDT) detonators cannot withstand high temperatures of 200 °C, and to improve the output performance of the detonator, a CL-20 (Hexanitrohexaazaisowurtzitane) based polymer bonded explosive (PBX) was investigated as the primary charge material for the detonator. To select the most suitable binder for thermal resistance, molecular dynamics (MD) simulations were employed to evaluate the performance of different binders at various crystal planes and temperatures. The results indicate that among the five PBXs models, CL-20/F exhibits the highest binding energy and the shortest bond initiation length at both ambient and elevated temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!