The use of surface-initiated ring-opening metathesis polymerization (SI-ROMP) for producing polymer dielectric layers is reported. Surface tethering of the catalyst to Au or Si/SiO2 surfaces is accomplished via self-assembled monolayers of thiols or silanes containing reactive olefins. Subsequent SI-ROMP of norbornene can be conducted under mild conditions. Pentacene semiconducting layers and gold drain/source electrodes are deposited over these polymer dielectric films. The resulting field effect transistors display promising device characteristics, demonstrating for the first time that SI-ROMP can be used in the construction of organic thin-film electronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja035773c | DOI Listing |
ACS Mater Au
January 2025
Christian Doppler Laboratory for Soft Structures for Vibration Isolation and Impact Protection (ADAPT), School of Education, STEM Education, Johannes Kepler University Linz, 4040 Linz, Austria.
Soft materials play a pivotal role in the efficacy of stretchable electronics and soft robotics, and the interface between the soft devices and rigid counterparts is especially crucial to the overall performance. Herein, we develop polyimide-polydimethylsiloxane (PI-PDMS) copolymers that, in various ratios, combine on a molecular level to give a series of chemically similar materials with an extremely wide Young's modulus range starting from soft 2 MPa and transitioning to rigid polymers with up to 1500 MPa. Of particular significance is the copolymers' capacity to prepare seamless stiffness gradients, as evidenced by strain distribution analyses of gradient materials, due to them being unified on a molecular level.
View Article and Find Full Text PDFSmall
January 2025
Faculty of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
Dielectric nanocomposites have garnered significant interest owing to their potential applications in energy storage. However, achieving high energy density (U) and charge/discharge efficiency (η) remains a challenge in their fabrication. In this paper, core-shell structured BaTiO@Polyvinylpyrrolidone (BT@PVP) nanoparticles are prepared, and incorporated into a semi-crystalline polyvinylidene fluoride (PVDF) matrix.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Electric Power Engineering, South China University of Technology, Guangzhou, 510641, China.
Self-adaptive dielectrics (SADs), with the characteristics of rapid charge dissipation in electric field distortion, is regarded as the future material for package insulation of advanced electronic devices. The current landscape of SADs is incapable to achieve tunable nonlinear electrical conductivity and threshold field strength due to the inherent Schottky barrier, significantly limiting the application scenarios of SADs. Here, a strategy is reported to construct a stepped Schottky barrier through virus-like structures, which are composed of subminiature metal particles and semiconductor microspheres.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA.
The dielectric properties of polymers play a pivotal role in the development of advanced materials for energy storage, electronics, and insulation. This review comprehensively explores the critical relationship between polymer chain conformation, nanostructure, and dielectric properties, focusing on parameters such as dielectric constant, dielectric loss, and dielectric breakdown strength. It highlights how factors like chain rigidity, free volume, molecular alignment, and interfacial effects significantly influence dielectric performance.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
China Electric Power Research Institute Co., Ltd., Beijing 100192, China.
In order to increase the thermal conductivity of neat epoxy resin and broaden its practical application in high-voltage insulation systems, we have constructed four kinds of epoxy resin nanocomposite models (a neat epoxy resin (EP), a graphene-doped epoxy resin nanocomposite (EP/GR) and hydroxyl- or carboxyl-functionalized graphene-doped epoxy resin nanocomposites (EP/GR-OH or EP/GR-COOH)) to systematically investigate their thermodynamic and electrical properties using molecular dynamics (MD) simulations. Compared with the EP model, carboxyl-functionalized graphene particles enhanced the thermal conductivity of the EP/GR-COOH model by 66.5% and increased its by 26.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!