Bacterial isolates from nematodes from Turkish soil samples were initially characterized by molecular methods and seven members of the genus Photorhabdus identified to the species level, using riboprint analyses and metabolic properties. Strain 07-5 (DSM 15195) was highly related to the type strain of Photorhabdus luminescens subsp. laumondii DSM 15139T, and was regarded a strain of this subspecies. Strains 1121T (DSM 15194T), 68-3 (DSM 15198) and 47-10 (DSM 15197) formed one, strain 39-8T (DSM 15199T), 39-7 (DSM 15196) and 01-12 (DSM 15193) formed a second cluster that branched intermediate the three subspecies of Photorhabdus luminescens. Based upon moderate 16S rRNA gene sequence similarities and differences in metabolic properties among themselves and with type strains of the three subspecies we consider the two clusters to represent two new subspecies of Photorhabdus luminescens for which the names Photorhabdus luminescens subsp. kayaii, type strain 1121T (DSM 15194T, NCIMB 13951T), and Photorhabdus luminescens subsp. thracensis subsp. nov., type strain 39-8T (DSM 15199T, NCIMB 13952T) are proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1078/0723-2020-00255DOI Listing

Publication Analysis

Top Keywords

photorhabdus luminescens
32
luminescens subsp
20
subspecies photorhabdus
12
subsp nov
12
type strain
12
dsm
10
luminescens
8
photorhabdus
8
subsp
8
subsp kayaii
8

Similar Publications

This study aimed to achieve two main objectives: first, to determine whether the virulence factors of symbiotic bacteria of entomopathogenic nematodes (EPNs) against insect hosts are cell-associated or secreted, and to shed light on the underlying mechanisms of pathogenicity; and second, to identify and evaluate the standalone pathogenicity of symbiotic bacteria associated with entomopathogenic nematodes against Tenebrio molitor. Three bacterial species, Xenorhabdus nematophila (A41, SC, A18 and SF), Photorhabdus kayaii, and P. thracensis, were isolated and characterized via phylogenetic analysis of 16S-rRNA and gyrB genes.

View Article and Find Full Text PDF

Background: Biomphalaria glabrata acts as the intermediate host of schistosomes that causes human schistosomiasis. Symbiotic bacteria, Xenorhabdus and Photorhabdus associated with Steinernema and Heterorhabditis, produce secondary metabolites with several biological activities. Controlling B.

View Article and Find Full Text PDF

Competition between bacterial species is a major factor shaping microbial communities. It is possible but remains largely unexplored that competition between bacterial pathogens can be mediated through antagonistic effects of bacterial effector proteins on host systems, particularly the actin cytoskeleton. Using Typhimurium invasion into cells as a model, we demonstrate that invasion is inhibited if the host actin cytoskeleton is disturbed by actin-specific toxins, namely, MARTX actin crosslinking (ACD) and Rho GTPase inactivation (RID) domains, TccC3, and 's own SpvB.

View Article and Find Full Text PDF

The QS regulator AphB promotes expression of the AHPND PirA and PirB toxins and may enhance virulence under acidic conditions.

Int J Biol Macromol

December 2024

International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan, ROC; The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 115, Taiwan, ROC; Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC. Electronic address:

Shrimp acute hepatopancreatic necrosis disease (AHPND) is one of the most devastating diseases to impact the global shrimp farming industry, with a mortality rate of 70 %-100 %. The key virulence factors are a pair of Photorhabdus insect-related (Pir)-like toxins, PirA and PirB. In this study, by using an in vitro transcription and translation assay, we first confirmed that the quorum sensing transcriptional regulator AphB could trigger the expression of its downstream genes after binding to the AphB binding sequence in the promoter region of the pirA/pirB operon.

View Article and Find Full Text PDF

To be a good killer: Evaluation of morphometry and nematodes-bacteria complex effect on entomopathogenic nematodes virulence against wireworms.

J Invertebr Pathol

November 2024

Chemical and Behavioral Ecology, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie 2B, Gembloux, 5030, Belgium. Electronic address:

Entomopathogenic nematodes (EPNs) have emerged as a promising tool for controlling soil-dwelling crop pests. However, their efficacy varies according to EPN populations and targeted hosts. Wireworms are polyphagous insects causing significant crop losses, especially since the ban on pesticides previously used for their control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!