Vegetated agricultural ditches play an important role in mitigation of pesticides following irrigation and storm runoff events. In a simulated runoff event in the Mississippi (USA) Delta, the mitigation capacity of a drainage ditch using the pyrethroid esfenvalerate (Asana XL) was evaluated. The pesticide was amended to soil prior to the runoff event to simulate actual runoff, ensuring the presence of esfenvalerate in both water and suspended particulate phases. Water, sediment, and plant samples were collected temporally and spatially along the drainage ditch. Even with mixing of the pesticide with soil before application, approximately 99% of measured esfenvalerate was associated with ditch vegetation (Ludwigia peploides, Polygonum amphibium, and Leersia oryzoides) three hours following event initiation. This trend continued for the 112 d study duration. Simple modeling results also suggest that aqueous concentrations of esfenvalerate could be mitigated to 0.1% of the initial exposure concentration within 510 m of a vegetated ditch. Observed field half-lives in water, sediment, and plant were 0.12 d, 9 d, and 1.3 d, respectively. These results validate the role vegetation plays in the mitigation of pesticides, and that ditches are an indispensable component of the agricultural production landscape.
Download full-text PDF |
Source |
---|
Planta
January 2025
Department of Fruit Science, College of Horticulture, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, 173230, India.
This review serves as a critical framework for guiding future research into the causes of russeting and the development of effective control strategies to enhance fruit quality. Russeting is a condition characterized by the formation of brown, corky patches on fruit skin which significantly impairs both the quality and market value of apples. This phenomenon arises from a complex interplay of various biotic and abiotic factors.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China. Electronic address:
Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.
An innovative approach to ticks and insect pests management is necessary to mitigate the challenges posed by the indiscriminate use of chemical pesticides, which can lead to resistance development and environmental pollution. Despite their great potential, biological control agents have significant manufacturing, application, and stability limitations. Currently, using phytochemicals, biosynthesized nanoparticles, and bioagents to get rid of arthropods might be a good alternative that would make farmers less worried about residues and resistance.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Crop Science, Chungbuk National University, Cheongju-si, 28644, Republic of Korea.
Glyphosate (Gly) is a widely used herbicide for weed control in agriculture, but it can also adversely affect crops by impairing growth, reducing yield, and disrupting nutrient uptake, while inducing toxicity. Therefore, adopting integrated eco-friendly approaches and understanding the mechanisms of glyphosate tolerance in plants is crucial, as these areas remain underexplored. This study provides proteome insights into Si-mediated improvement of Gly-toxicity tolerance in Brassica napus.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University 430079 Wuhan, PR China. Electronic address:
The recurrent breast cancer (BC) has elicited significant concern due to its rising recurrence rates and associated mortality. However, there is currently no effective detection method to mitigate the deterioration of BC recurrence. The imbalance of HClO content could lead to oxidative stress in the body, which damaging host tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!