Exogenous nitric oxide upregulates p21(waf1/cip1) in pulmonary microvascular smooth muscle cells.

J Vasc Res

Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

Published: July 2004

AI Article Synopsis

  • NO plays a role in inhibiting the proliferation of pulmonary microvascular smooth muscle cells (PMVSMC), with its effects enhanced under hypoxic conditions.
  • The study found that this inhibition is reversible, not linked to apoptosis, and occurs independently of the soluble guanylyl cyclase pathway.
  • The upregulation of the cyclin-dependent kinase inhibitor p21 is suggested to be a key mechanism by which NO exerts its antiproliferative effects on PMVSMC.

Article Abstract

The histopathology of chronic pulmonary hypertension includes microvascular proliferation and neointimal formation. Nitric oxide (NO) has been implicated in the regulation of these mechanisms, but how NO controls microvascular proliferation and its effect on pulmonary microvascular cells is still unclear. In this study, we characterized the in vitro effects of NO on rat pulmonary microvascular smooth muscle cell (PMVSMC) proliferation and investigated the contribution of the p42/44 mitogen-activated protein kinase (MAPK) pathway and p21(waf1/cip1) induction to this response. NO donors inhibited PMVSMC proliferation in a dose-dependent manner. In the presence of hypoxia, the degree of inhibition was significantly enhanced. This inhibition was reversible and independent of apoptosis. The soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) had no impact on proliferation rates, suggesting a cyclic guanosine monophosphate-independent process. Administration of MEK1/2 inhibitors failed to abrogate the antimitotic effect of NO. There was a two- fold induction of the cyclin-dependent kinase inhibitor p21 in PMVSMC treated with NO donors. Under hypoxic conditions, NO caused a three-fold increase in p21 levels. These results demonstrate that NO inhibits PMVSMC proliferation and that this inhibition is not the result of p42/44 MAPK activation. The ability of NO to induce p21 upregulation may be a mechanism by which it exerts antiproliferative effects in PMVSMC.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000077577DOI Listing

Publication Analysis

Top Keywords

pulmonary microvascular
12
pmvsmc proliferation
12
nitric oxide
8
microvascular smooth
8
smooth muscle
8
microvascular proliferation
8
proliferation
6
microvascular
5
pmvsmc
5
exogenous nitric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!