It is well established that Fe and ceruloplasmin interact in animals and in in vitro models. However, Fe-mediated regulation of ceruloplasmin has never been investigated in humans. In an observational study, 53 pregnant women aged 19-39 yr (29.8 +/- 0.7 yr, mean +/- SEM) were recruited at the Aberdeen Antenatal Clinic, Aberdeen Maternity Hospital, UK. All requirements for local ethical committees were followed. Venous blood samples were taken from each woman at 34 wk gestation for measurement of Fe status and ceruloplasmin. Various parameters were used to test for Fe status. The most sensitive one appeared to be soluble transferrin receptor, which increased with parity. In the population studied, there was no relationship between hemoglobin or ferritin and serum ceruloplasmin. However, using soluble transferrin receptor (sTfR) levels, we were able to demonstrate an inverse linear relationship (r = 0.37, p = 0.021, n = 41) between Fe status and ceruloplasmin. Fe supplementation, number of previous pregnancies, and smoking habits did not affect this relationship. Our data support in vitro results showing regulation of ceruloplasmin by Fe and also suggest that the interactions between Fe and ceruloplasmin should be considered when Fe supplementation is given.

Download full-text PDF

Source
http://dx.doi.org/10.1385/BTER:98:1:01DOI Listing

Publication Analysis

Top Keywords

regulation ceruloplasmin
8
status ceruloplasmin
8
soluble transferrin
8
transferrin receptor
8
ceruloplasmin
7
interrelations ceruloplasmin
4
status
4
ceruloplasmin status
4
status human
4
human pregnancy
4

Similar Publications

Dysfunctional copper homeostasis in affects genomic and neuronal stability.

Redox Biochem Chem

December 2024

Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Germany.

While copper (Cu) is an essential trace element for biological systems due to its redox properties, excess levels may lead to adverse effects partly due to overproduction of reactive species. Thus, a tightly regulated Cu homeostasis is crucial for health. Cu dyshomeostasis and elevated labile Cu levels are associated with oxidative stress and neurodegenerative disorders, but the underlying mechanisms have yet to be fully characterized.

View Article and Find Full Text PDF

Population-based biobanks enable genomic screening to support initiatives that prevent disease onset or slow its progression and to estimate the prevalence of genetic diseases in the population. Wilson's disease (WD) is a rare genetic copper-accumulation disorder for which timely intervention is crucial, as treatment is readily available. We studied WD in the Estonian Biobank population to advance patient screening, swift diagnosis, and subsequent treatment.

View Article and Find Full Text PDF

Copper homeostasis and neurodegenerative diseases.

Neural Regen Res

November 2025

International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China.

Copper, one of the most prolific transition metals in the body, is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations. Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins, including copper transporters (CTR1 and CTR2), the two copper ion transporters the Cu -transporting ATPase 1 (ATP7A) and Cu-transporting beta (ATP7B), and the three copper chaperones ATOX1, CCS, and COX17. Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue.

View Article and Find Full Text PDF

Curcumol ameliorates alcohol and high-fat diet-induced fatty liver disease via modulation of the Ceruloplasmin/iron overload/mtDNA signaling pathway.

J Nutr Biochem

February 2025

Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China; Laboratory of Pharmacology of Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China. Electronic address:

Fatty liver disease (FLD), a chronic liver disease characterized by excessive lipid deposition, is affecting more and more people worldwide owing to the increasing global incidence of obesity and heavy alcohol consumption. However, there is still no effective strategy for prevention or treatment of alcohol and high-fat diet (HFD)-induced FLD. The purpose of this study was to investigate the effect of curcumol on alcohol and HFD-induced FLD and the underlying molecular mechanisms.

View Article and Find Full Text PDF

Objective: To investigate the value of relative exchangeable copper (REC) in diagnosing Wilson's disease (WD) and to determine its significance in the differentiation of Traditional Chinese Medicine (TCM) syndrome.

Methods: A total of 78 patients with WD were recruited on the same day of the medical visit, and among them, 32 were suffering from non-WD (N-WD) and 37 were heterozygous ATP7B carriers (HC) enrolled as controls. Molecular genetic testing was performed for diagnosing WD and HC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!