Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The brain represents a privileged organ with respect to selenium (Se) supply and retention. It contains high amounts of this essential trace element, which is efficiently retained even in conditions of Se deficiency. Accordingly, no severe neurological phenotype has been reported for animals exposed to Se-depleted diets. They are, however, more susceptible to neuropathological challenges. Recently, gene disruption experiments supported a pivotal role for different selenoproteins in brain function. Using these and other transgenic models, longstanding questions concerning the preferential supply of Se to the brain and the hierarchy among the different selenoproteins are readdressed. Given that genes for at least 25 selenoproteins have been identified in the human genome, and most of these are expressed in the brain, their specific roles for normal brain function and neurological diseases remain to be elucidated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jn/134.4.707 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!