The capsid protein of Semliki Forest virus constitutes the N-terminal part of a large viral polyprotein. It consists of an unstructured basic segment (residues 1-118) and a 149 residue serine protease module (SFVP, residues 119-267) comprised of two beta-barrel domains. Previous in vivo and in vitro translation experiments have demonstrated that SFVP folds co-translationally during synthesis of the viral polyprotein and rapidly cleaves itself off the nascent chain. To test whether fast co-translation folding of SFVP is an intrinsic property of the polypeptide chain or whether folding is accelerated by cellular components, we investigated spontaneous folding of recombinant SFVP in vitro. The results show that the majority of unfolded SFVP molecules fold faster than any previously studied two-domain protein (tau=50 ms), and that folding of the N-terminal domain precedes structure formation of the C-terminal domain. This shows that co-translational folding of SFVP does not require additional cellular components and suggests that rapid folding is the result of molecular evolution towards efficient virus biogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2004.02.037 | DOI Listing |
Sci Rep
January 2025
Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil.
Extracellular vesicles (EVs)-mediated communication by cancer cells contributes towards the pro-tumoral reprogramming of the tumor microenvironment. Viral infection has been observed to alter the biogenesis and cargo of EVs secreted from host cells in the context of infectious biology. However, the impact of oncolytic viruses on the cargo and function of EVs released by cancer cells remains unknown.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
Semliki Forest virus (SFV) is a neuropathogenic alphavirus which is of interest both as a model neurotropic alphavirus and as an oncolytic virus with proven potency in preclinical cancer models. In laboratory mice, peripherally administered SFV infiltrates the central nervous system (CNS) and causes encephalitis of varying severity. The route of SFV CNS entrance is poorly understood but has been considered to occur through the blood-brain barrier.
View Article and Find Full Text PDFPLoS Pathog
December 2024
State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.
The Very Low-Density Lipoprotein Receptor (VLDLR) is an entry receptor for the prototypic alphavirus Semliki Forest Virus (SFV). However, the precise mechanisms underlying the entry of SFV into cells mediated by VLDLR remain unclear. In this study, we found that of the eight class A (LA) repeats of the VLDLR, only LA2, LA3, and LA5 specifically bind to the native SFV virion while synergistically promoting SFV cell attachment and entry.
View Article and Find Full Text PDFmBio
December 2024
Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
The alphavirus chikungunya virus (CHIKV) is a serious human pathogen that can cause large-scale epidemics characterized by fever and joint pain and often resulting in chronic arthritis. Infection by alphaviruses including CHIKV and the closely related Semliki Forest virus (SFV) can induce the formation of filopodia-like intercellular long extensions (ILEs). ILEs emanate from an infected cell, stably attach to a neighboring cell, and mediate cell-to-cell viral transmission that is resistant to neutralizing antibodies.
View Article and Find Full Text PDFTrends Microbiol
December 2024
Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA. Electronic address:
Alphaviruses are a serious threat to global health and can cause lethal encephalitic or arthritogenic disease in humans and animals. As there are no licensed antivirals, it is critical to improve our understanding of alphavirus interactions with the host cell. Here, we focus on the essential alphavirus protein capsid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!