Infections with bacterial pathogens can induce increased anxiety-like behaviors in rodents without otherwise noticeable behavioral or physiological symptoms of sickness, as shown with the food-borne pathogen Campylobacter jejuni. This observation implicates the ability of the brain to sense, and respond to, such an infection. We tested our hypothesis that intestinal infection with the gram-negative bacterium C. jejuni leads to activation of certain brain regions that process gastro-intestinal sensory information. The induction of c-Fos protein as a marker for neuronal activation was assessed in the brains of mice inoculated orally with live C. jejuni, as compared to saline-treated controls. Upon colonization of the intestines, C. jejuni activated visceral sensory nuclei in the brainstem (the nucleus of the solitary tract and the lateral parabrachial nucleus) both one and two days after the oral challenge. In addition, increased c-Fos expression occurred in the hypothalamic paraventricular nucleus on the second day. This neural response occurred in the absence of measurable systemic immune activation, as serum levels of tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6 were undetectable and/or unchanged. These findings support the notion that information about infection with C. jejuni in the gut is indeed relayed to the visceral sensory structures in the brain. The brain responses observed could contribute to changes in behavior observed after infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbi.2003.08.002 | DOI Listing |
mSphere
January 2025
Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.
Post-transcriptional gene regulation by non-coding small RNAs (sRNAs) is critical for colonization and survival of enteric pathogens, including the zoonotic pathogen . In this study, we utilized IA3902 (a representative isolate of the sheep abortion clone) and W7 (a highly motile variant of NCTC 11168, a human gastroenteritis strain) to further investigate regulation by sRNA CjNC110. Both motility and autoagglutination ability were confirmed to be phenotypes of conserved regulation by CjNC110.
View Article and Find Full Text PDFMicroorganisms
December 2024
Pediatric Infectious Disease Unit, Barilla Children's Hospital of Parma, 43126 Parma, Italy.
Campylobacteriosis is a leading cause of infectious diarrhea and foodborne illness worldwide. infection is primarily transmitted through the consumption of contaminated food, especially uncooked meat, or untreated water; contact with infected animals or contaminated environments; poultry is the primary reservoir and source of human transmission. The clinical spectrum of / infection can be classified into two distinct categories: gastrointestinal and extraintestinal manifestations.
View Article and Find Full Text PDFMicroorganisms
November 2024
Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan.
Spotty liver disease (SLD) affects free-range laying hens, leading to mortality and reduced egg production. species, including , have been associated with SLD cases worldwide. However, the cause of SLD-like lesions found in broilers in Japan still remains unclear.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Cardiology, Athens University Hospital Attikon, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece.
, a common cause of gastroenteritis worldwide, has also been associated with rare extraintestinal infections, including myocarditis. We report a unique case of a 24-year-old male who presented with febrile diarrhea and acute chest pain. Diagnostic investigations revealed elevated cardiac troponin levels, normal electrocardiography findings, and myocardial inflammation on cardiac magnetic resonance imaging, confirming the diagnosis of acute myocarditis.
View Article and Find Full Text PDFAntibiotics (Basel)
November 2024
Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK.
(CJ) is the etiological agent of the world's most common intestinal infectious food-borne disease, ranging from mild symptoms to fatal outcomes. The development of innovative synbiotics that inhibit the adhesion and reproduction of multidrug-resistant (MDR) CJ in animals and humans, thereby preserving intestinal homeostasis, is relevant. We have created a synbiotic based on the consortium of 2029 (LC2029), 7247 (LS7247), and a mannan-rich prebiotic (Actigen).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!