Analyses of samples of untreated ground water from 413 community-, non-community- (such as restaurants), and domestic-supply wells throughout the US were used to determine the frequency of detection of halogenated volatile organic compounds (VOCs) in drinking-water sources. The VOC data were compiled from archived chromatograms of samples analyzed originally for chlorofluorocarbons (CFCs) by purge-and-trap gas chromatography with an electron-capture detector (GC-ECD). Concentrations of the VOCs could not be ascertained because standards were not routinely analyzed for VOCs other than trichloromonofluoromethane (CFC-11), dichlorodifluoromethane (CFC-12) and 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113). Nevertheless, the peak areas associated with the elution times of other VOCs on the chromatograms can be classified qualitatively to assess concentrations at a detection limit on the order of parts per quadrillion. Three or more VOCs were detected in 100% (percent) of the chromatograms, and 77.2% of the samples contained 10 or more VOCs. The maximum number of VOCs detected in any sample was 24. Modeled ground-water residence times, determined from concentrations of CFC-12, were used to assess historical trends in the cumulative occurrence of all VOCs detected in this analysis, as well as the occurrence of individual VOCs, such as CFC-11, carbon tetrachloride (CCl(4)), chloroform and tetrachloroethene (PCE). The detection frequency for all of the VOCs detected has remained relatively constant from approximately 1940 to 2000; however, the magnitude of the peak areas on the chromatograms for the VOCs in the water samples has increased from 1940 to 2000. For CFC-11, CCl(4), chloroform and PCE, small peaks decrease from 1940 to 2000, and large peaks increase from 1940 to 2000. The increase in peak areas on the chromatograms from analyses of more recently recharged water is consistent with reported increases in atmospheric concentrations of the VOCs. Approximately 44% and 6.7% of the CCl(4) and PCE detections, respectively, in pre-1940 water, and 68% and 62% of the CCl(4) and PCE detections, respectively, in water recharged in 2000 exceed solubility equilibrium with average atmospheric concentrations. These exceedences can be attributed to local atmospheric enrichment or direct contaminant input to ground-water flow systems. The detection of VOCs at concentrations indicative of atmospheric sources in 100% of the samples indicates that untreated drinking water from ground-water sources in the US recharged within the past 60 years has been affected by anthropogenic activity. Additional inputs from a variety of sources such as spills, underground injections and leaking landfills or storage tanks increasingly are providing additional sources of contamination to ground water used as drinking-water sources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2003.09.007DOI Listing

Publication Analysis

Top Keywords

vocs detected
16
1940 2000
16
vocs
13
ground water
12
peak areas
12
water
9
historical trends
8
halogenated volatile
8
volatile organic
8
organic compounds
8

Similar Publications

Background: Additive manufacturing or 3-dimensional (3D) printing is an emerging technology with increasing prevalence in non-industrial settings such as university and school settings. However, printers are often located in spaces not designed for this purpose.

Methods: 3D-printer use in 11 university and K-12 schools was evaluated by identifying emissions using area air sampling for volatile organic compounds (VOCs) and particle counting instruments (PCIs) measuring ultrafine particulate (UFP) and evaluating controls to reduce potential exposure.

View Article and Find Full Text PDF

Insights into the adsorption mechanisms of VOCs molecules on non-oxidized and oxidized SnO (110) monolayer: DFT analysis.

J Mol Model

January 2025

Laboratory of Nanostructures and Advanced Materials, Mechanics and Thermofluids, Faculty of Sciences and Technologies, Hassan II University of Casablanca, B.P 146, 20650, Mohammedia, Morocco.

Context: Designing efficient sensitive materials for the detection of volatile organic compounds (VOCs) such as ethanol, acetone, and benzene is stringent owing to the significant environmental and health risks induced by these compounds, in addition to their role as biomarkers for chronic diseases and food quality. This study investigates the adsorption mechanisms of VOC molecules (ethanol, acetone, and benzene) on both non-oxidized and oxidized SnO (110) monolayers and identifies the most suitable surface for gas sensing applications. For this, we examined structural properties, adsorption energies, density of states, gas responses, and recovery times.

View Article and Find Full Text PDF

Mesh-Collision Microtube Plasma Ion Source for Direct Mass Spectrometry Analysis.

Anal Chem

January 2025

Chinese Academy of Inspection and Quarantine, Beijing 100176, China.

Developing ambient ionization methods for direct mass spectrometry (MS) analysis is crucial for achieving sample-to-answer capabilities, especially for rapid analysis and monitoring in specific scenarios. Herein, a compact device is presented that utilizes mesh-collision microtube plasma (MC-μTP) ionization for direct online MS analysis. This device features a self-aspirating design that enables the direct analysis of various sample types.

View Article and Find Full Text PDF

Oxidative stress (OS) refers to the disruption in the balance between free radical generation and antioxidant defenses, leading to potential tissue damage. Reactive oxygen species (ROS) can interact with biological components, triggering processes like protein oxidation, lipid peroxidation, or DNA damage, resulting in the generation of several volatile organic compounds (VOCs). Recently, VOCs provided new insight into cellular metabolism and can serve as potential biomarkers.

View Article and Find Full Text PDF

Introduction: Breath Volatile organic compounds (VOCs) are promising biomarkers for clinical purposes due to their unique properties. Translation of VOC biomarkers into the clinic depends on identification and validation: a challenge requiring collaboration, well-established protocols, and cross-comparison of data. Previously, we developed a breath collection and analysis method, resulting in 148 breath-borne VOCs identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!