Autoantibodies to prothrombin are common in patients with systemic lupus erythematosus. Although their presence is a risk factor for thrombosis, neither their origin nor their precise role in inducing the procoagulant state is known. We have developed a phage-display antibody library from patients with systemic lupus erythematosus with antiprothrombin antibodies, and we have selected two single-chain Fv antibody fragments (ScFvs) by panning on a prothrombin-coated surface. In prothrombin activation assays using purified components, these antibodies promoted prothrombin activation. These ScFvs, termed AN78 and AN129, bound to immobilized prothrombin in a concentration-dependent specific manner but not to other anionic phospholipid binding proteins such as beta2-glycoprotein I or annexin V. Phosphatidylserine-bound prothrombin, but not soluble prothrombin, inhibited the binding suggesting that the epitope is available only on immobilized prothrombin. To localize the epitope, prothrombin was treated with thrombin or factor Xa and various prothrombin activation fragments were subsequently isolated and tested in ELISA with the ScFvs. Both AN78 and AN129 bound to prethrombin I (the fragment lacking the Gla domain and the first kringle domain), to fragment 1.2 (containing Gla and the two kringle domains only) and to fragment 2 but not to thrombin, thus localizing the cognate epitope to the kringle 2 domain in prothrombin. Analysis of the cDNA sequences of these antibodies show clustered mutational patterns in the complementarity determining region, suggesting that variable domains are the products of antigen-driven B cell clonal maturation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi030167fDOI Listing

Publication Analysis

Top Keywords

kringle domain
12
prothrombin activation
12
prothrombin
11
domain prothrombin
8
patients systemic
8
systemic lupus
8
lupus erythematosus
8
an78 an129
8
an129 bound
8
immobilized prothrombin
8

Similar Publications

The tropism of adenoviruses (Ads) is significantly influenced by the binding of various blood factors. To investigate differences in their binding, we conducted cryo-EM analysis on complexes of several human adenoviruses with human platelet factor-4 (PF4), coagulation factors FII (Prothrombin), and FX. While we observed EM densities for FII and FX bound to all the species-C adenoviruses examined, no densities were seen for PF4, even though PF4 can co-pellet with various Ads.

View Article and Find Full Text PDF

Background: Recombinant plasminogen activator (r-PA) consists of the Kringle-2 and protease domains of human tissue-type plasminogen. It is used clinically to treat coronary artery thrombosis and acute myocardial infarction. However, the expression and production of reteplase (r-PA) are limited due to its susceptibility to proteolysis during manufacturing processes.

View Article and Find Full Text PDF

Background: Factor XII (FXII or F12) deficiency is a rare inherited disorder, typically lacking haemorrhagic symptoms. There is limited literature exists on FXII deficiency and mutations within the Chinese population. This study aimed to characterize the spectrum of F12 gene mutations in a Chinese cohort and to investigate the relationship between FXII mutations and clinical phenotypes.

View Article and Find Full Text PDF

Elevated lipoprotein(a) is a genetically transmitted codominant trait that is an independent risk driver for cardiovascular disease. Lipoprotein(a) concentration is heavily influenced by genetic factors, including kringle IV-2 domain size, single-nucleotide polymorphisms, and interleukin-1 genotypes. Apolipoprotein(a) is encoded by the gene and contains 10 subtypes with a variable number of copies of kringle -2, resulting in >40 different apolipoprotein(a) isoform sizes.

View Article and Find Full Text PDF

Codon switching of conserved Ser residues in coagulation and fibrinolytic proteases.

J Thromb Haemost

September 2024

Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA. Electronic address:

Background: Unique among all amino acids, Ser is encoded by 2 sets of codons, TCN and AGY (N = any nucleotide, Y = pyrimidine), that cannot interconvert through single nucleotide substitutions. Both codons are documented at the essential residues S195 and S214 within the active site of serine proteases. However, it is not known how the codons interconverted during evolution because replacement of S195 or S214 by other amino acids typically results in loss of activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!