Runx2 is an essential transcription factor for osteoblast differentiation from early commitment step to final differentiation. Based on its crucial role in osteoblast differentiation, the transcriptional activity of Runx2 protein implies more valuable information for osteoblast differentiation than any other parameters, such as Runx2 mRNA or protein level. Thus, a sensitive, specific, and consistent method to determine the Runx2 transcriptional activity has long been expected. Here we suggest a stable cell line that carries 6xOSE2-Luciferase reporter vector would be a good evaluation system to determine biological Runx2 transcriptional activity. The proliferation rate, cell shape, and the myogenic differentiation potential of the cloned cell line were similar to those of parental premyoblastic C2C12 cells. The cells specifically responded to Runx2 modulating agent such as FGF2. The stable cell line responded 5-6 folds more sensitively than the transiently transfected cells with Runx2. Though overexpression of any Runx gene stimulated the luciferase activity, Runx2 enhanced the reporter activity the highest. Collectively, the 6xOSE2-luc stable cells would be a good biological evaluation system to assess the activity of extracellular Runx2 modulating stimulations as well as the signal transduction pathways involved in the stimulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.20038 | DOI Listing |
Sci Rep
January 2025
International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China.
To meet the requirements of the biopharmaceutical industry, improving the yield of recombination therapeutic protein (RTP) from Chinese hamster ovary (CHO) cells is necessary. The human cytomegalovirus (CMV) promoter is widely used for RTP expression in CHO cells. To further improve RTP production, we truncated the human CMV intron and further evaluated the effect of four synthetic introns, including ctEF-1α first, EF-1α first, chimeric, and β-globin introns combined with the CMV promoter on recombinant expression levels in transient and stably recombinant CHO cells.
View Article and Find Full Text PDFSci Rep
January 2025
Amrita School of Artificial Intelligences, Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
Lung cancer is the leading cause of cancer-related fatalities globally, accounting for the highest mortality rate among both men and women. Mutations in the epidermal growth factor receptor (EGFR) gene are frequently found in non-small cell lung cancer (NSCLC). Since curcumin and CB[2]UN support various medicinal applications in drug delivery and design, we investigated the effect of curcumin and CB[2]UN-based drugs in controlling EGFR-mutant NSCLC through a dodecagonal computational approach.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
Superparamagnetic iron oxide nanoparticles (SPIONs) are known to be good MRI contrasts, but they have a high tendency to aggregate and their biocompatibility is limited. Hyaluronic acid is highly biocompatible, can provide SPION with colloidal stability, and interacts specifically with tumor cells through the CD44 receptor; therefore, it was used as a stabilizing layer. We successfully obtained SPION coated with hyaluronic acid and further functionalized it with folic acid to construct a dual-targeted system.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Colorectal cancer (CRC), one of the diseases posing a threat to global health, according to the latest data, is the third most common cancer globally and the second leading cause of cancer-related deaths. The development and refinement of novel structures of small molecular compounds play a crucial role in tumor treatment and overcoming drug resistance. In this study, our objective was to screen and characterize novel compounds for overcoming drug resistance via the B Lymphoma Mo-MLV insertion region 1 (Bmi-1) reporter screen assay.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
This study developed the multifunctional cellulose nanofibers (CNFs) as emulsifier for preparation of antibacterial, ultrastable and non-toxic emulsion. To achieve these properties, CNFs were oxidated using sodium periodate to introduce aldehyde groups, which served as Schiff-base reaction sites for amino groups of polyhexamethylene guanidine (PHMG), yielding PHMG-grafted CNFs (PCNFs). The modified CNFs retained good emulsification ability while acquiring antibacterial properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!