Cre recombinase-mediated gene targeting of mesenchymal cells.

Genesis

Division of Signal Transduction and Growth Control, Deutsches Krebsforschungszentrum, Heidelberg, Germany.

Published: March 2004

Loss-of-function approaches by the Cre/loxP technology have provided powerful tools for functional analyses of genes of interest expressed preferentially in a particular tissue. Here we describe the generation of transgenic mouse lines expressing Cre recombinase under the control of the promoter/enhancer unit of the gene for the alpha2 chain of collagen type I (Col1alpha2). As an expression vector, we used a P1-derived artificial chromosome (PAC), which harbors approximately 100 kb carrying the col1alpha2 gene. The improved coding sequence of the Cre recombinase was introduced to replace the first exon of col1alpha2. Cre expression was determined by immunohistochemistry and Cre-mediated onset of beta-galactosidase expression in ROSA26R-Cre reporter mice. In four analyzed transgenic lines, Cre recombinase was efficiently expressed during embryogenesis and in adult animals in cells of mesenchymal origin, such as dermal fibroblasts, mesenchymal cells of blood vessel walls, and cells in fibrous connective tissues surrounding internal organs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/gene.20004DOI Listing

Publication Analysis

Top Keywords

cre recombinase
12
mesenchymal cells
8
cre
5
cre recombinase-mediated
4
recombinase-mediated gene
4
gene targeting
4
targeting mesenchymal
4
cells
4
cells loss-of-function
4
loss-of-function approaches
4

Similar Publications

Unlabelled: Cancer cachexia, a multifactorial condition resulting in muscle and adipose tissue wasting, reduces the quality of life of many people with cancer. Despite decades of research, therapeutic options for cancer cachexia remain limited. Cachexia is highly prevalent in people with pancreatic ductal adenocarcinoma (PDAC), and many animal models of pancreatic cancer are used to understand mechanisms underlying cachexia.

View Article and Find Full Text PDF

Temporally and Spatially Controlled Age-Related Prostate Cancer Model in Mice.

Bio Protoc

January 2025

Department of Structural and Cellular Biology, Tulane University, New Orleans, LA, USA.

The initiation and progression of prostate cancer (PCa) are associated with aging. In the history of age-related PCa research, mice have become a more popular animal model option than any other species due to their short lifespan and rapid reproduction. However, PCa in mice is usually induced at a relatively young age, while it spontaneously develops in humans at an older age.

View Article and Find Full Text PDF

Specific, or not specific, that is the question: Is Cre recombinase deleting your favorite gene only in cardiomyocytes?

J Mol Cell Cardiol Plus

December 2024

Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.

View Article and Find Full Text PDF

Generation of a genetically engineered porcine melanoma model featuring oncogenic control through conditional Cre recombination.

Sci Rep

January 2025

Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.

Article Synopsis
  • Melanoma is a severe skin cancer that starts from melanocytes, and existing rodent models have limitations in mirroring human conditions.
  • Researchers have created a transgenic pig model that mimics human melanoma using somatic cell nuclear transfer (SCNT), enabling better study of the disease.
  • This new model allows for the investigation of melanoma development and response to treatments, providing a significant resource for advancing cancer research and drug testing.
View Article and Find Full Text PDF

Novel Cystic Fibrosis Ferret Model Enables Visualization of CFTR Expression Cells and Genetic CFTR Reactivation.

Hum Gene Ther

January 2025

Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.

Cystic fibrosis (CF) is caused by mutations in the (). While gene therapy holds promise as a cure, the cell-type-specific heterogeneity of expression in the lung presents significant challenges. Current CF ferret models closely replicate the human disease phenotype but have limitations in studying functional complementation through cell-type-specific CFTR restoration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!