Taste bud cell dynamics during normal and sodium-restricted development.

J Comp Neurol

Virginia Merrill Bloedel Hearing Research Center and Department of Otolaryngology, University of Washington, Seattle, Washington 98195-7923, USA.

Published: April 2004

Taste bud volume increases over the postnatal period to match the number of neurons providing innervation. To clarify age-related changes in fungiform taste bud volume, the current study investigated developmental changes in taste bud cell number, proliferation rate, and life span. Taste bud growth can largely be accounted for by addition of cytokeratin-19-positive taste bud cells. Examination of taste bud cell kinetics with 3H-thymidine autoradiography revealed that cell life span and turnover periods were not altered during normal development but that cells were produced more rapidly in young rats, a prominent modification that could lead to increased taste bud size. By comparison, dietary sodium restriction instituted during pre- and postnatal development results in small taste buds at adulthood as a result of fewer cytokeratin-19-positive cells. The dietary manipulation also had profound influences on taste bud growth kinetics, including an increased latency for cells to enter the taste bud and longer life span and turnover periods. These studies provide fundamental, new information about taste bud development under normal conditions and after environmental manipulations that impact nerve/target matching.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.20064DOI Listing

Publication Analysis

Top Keywords

taste bud
44
taste
12
bud cell
12
life span
12
bud
10
bud volume
8
bud growth
8
span turnover
8
turnover periods
8
cell
4

Similar Publications

Objective: With altered sense of taste being a common symptom of coronavirus disease 2019 (COVID-19), the main objective was to investigate the presence and distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) within the tongue over the course of infection.

Methods: Golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 and tongues were collected at 2, 3, 5, 8, 17, 21, 35, and 42 days post-infection (dpi) for analysis. In order to test for gross changes in the tongue, the papillae of the tongue were counted.

View Article and Find Full Text PDF

Habitual consumption of low-calorie sweeteners (LCS) during juvenile-adolescence can lead to greater sugar intake later in life. Here, we investigated if exposure to the LCS Acesulfame Potassium (Ace-K) during this critical period of development reprograms the taste system in a way that would alter hedonic responding for common dietary compounds. Results revealed that early-life LCS intake not only enhanced the avidity for a caloric sugar (fructose) when rats were in a state of caloric need, it increased acceptance of a bitterant (quinine) in Ace-K-exposed rats tested when middle-aged.

View Article and Find Full Text PDF

Structural comparisons of human and mouse fungiform taste buds.

Chem Senses

January 2025

Dept. Cell & Devel. Biology, Rocky Mountain Taste & Smell Center, Univ. Colorado School of Medicine, Aurora, CO.

Taste buds are commonly studied in rodent models, but some differences exist between mice and humans in terms of gustatory mechanisms and sensitivities. Whether these functional differences are reflected in structural differences between species is unclear. Using immunofluorescent image stacks, we compared morphological and molecular characteristics of mouse and human fungiform taste buds.

View Article and Find Full Text PDF

Chlorhexidine-loaded microneedles for treatment of oral diseases.

Int J Pharm

December 2024

Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel. Electronic address:

Chlorhexidine (CHX) is a gold standard therapeutic agent against clinical oral pathogens. However, its oral use is limited due to unpleasant taste, alteration in taste buds, staining of teeth and mucous membranes. Therefore, CHX-loaded PLGA microneedles (MNs) were fabricated for local and controlled release in the oral cavity, using a casting mold method.

View Article and Find Full Text PDF

Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds.

J Neurochem

January 2025

Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Different taste cells express unique cell-type markers, enabling researchers to distinguish them and study their functional differentiation. Using single-cell RNA-Seq of taste cells in mouse fungiform papillae, we found that Cellular Communication Network Factor 3 (Ccn3) was highly expressed in Type III taste cells but not in Type II taste cells. Ccn3 is a protein-coding gene involved in various biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!