Disassembly of the epithelial apical junctional complex (AJC), composed of the tight junction (TJ) and adherens junction (AJ), is important for normal tissue remodeling and pathogen-induced disruption of epithelial barriers. Using a calcium depletion model in T84 epithelial cells, we previously found that disassembly of the AJC results in endocytosis of AJ/TJ proteins. In the present study, we investigated the role of the actin cytoskeleton in disassembly and internalization of the AJC. Calcium depletion induced reorganization of apical F-actin into contractile rings. Internalized AJ/TJ proteins colocalized with these rings. Both depolymerization and stabilization of F-actin inhibited ring formation and disassembly of the AJC, suggesting a role for actin filament turnover. Actin reorganization was accompanied by activation (dephosphorylation) of cofilin-1 and its translocation to the F-actin rings. In addition, Arp3 and cortactin colocalized with these rings. F-actin reorganization and disassembly of the AJC were blocked by blebbistatin, an inhibitor of nonmuscle myosin II. Myosin IIA was expressed in T84 cells and colocalized with F-actin rings. We conclude that disassembly of the AJC in calcium-depleted cells is driven by reorganization of apical F-actin. Mechanisms of such reorganization involve cofilin-1-dependent depolymerization and Arp2/3-assisted repolymerization of actin filaments as well as myosin IIA-mediated contraction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC420089 | PMC |
http://dx.doi.org/10.1091/mbc.e04-02-0163 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!