AI Article Synopsis

  • AD101 and SCH-C are small molecules that block HIV-1 entry through the CCR5 coreceptor, with AD101 effective in both human and macaque CCR5, while SCH-C is selective for human CCR5.
  • Only the methionine-198 residue in macaque CCR5 prevents SCH-C from inhibiting HIV-1, as changing this residue to isoleucine makes the macaque coreceptor sensitive to SCH-C.
  • The findings suggest that the presence of isoleucine at position 198 in CCR5 is crucial for inducing a conformational change that inhibits HIV-1 infection, emphasizing its role in CCR5's conformational state.

Article Abstract

AD101 and SCH-C are two chemically related small molecules that inhibit the entry of human immunodeficiency virus type 1 (HIV-1) via human CCR5. AD101 also inhibits HIV-1 entry via rhesus macaque CCR5, but SCH-C does not. Among the eight residues that differ between the human and macaque versions of the coreceptor, only one, methionine-198, accounts for the insensitivity of macaque CCR5 to inhibition by SCH-C. Thus, the macaque coreceptor engineered to contain the natural human CCR5 residue (isoleucine) at position 198 is sensitive to HIV-1 entry inhibition by SCH-C, whereas a human CCR5 mutant containing the corresponding macaque residue (methionine) is resistant. Position 198 is in CCR5 transmembrane (TM) helix 5 and is not located within the previously defined binding site for AD101 and SCH-C, which involves residues in TM helices 1, 2, 3, and 7. SCH-C binds to human CCR5 whether residue 198 is isoleucine or methionine, and it also binds to macaque CCR5. However, the binding of a conformation-dependent monoclonal antibody to human CCR5 is inhibited by SCH-C only when residue 198 is isoleucine. These observations, taken together, suggest that the antiviral effects of SCH-C and AD101 involve stabilization, or induction, of a CCR5 conformation that is not compatible with HIV-1 infection. However, SCH-C is unable to exert this effect on CCR5 conformation when residue 198 is methionine. The region of CCR5 near residue 198 has, therefore, an important influence on the conformational state of this receptor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC374253PMC
http://dx.doi.org/10.1128/jvi.78.8.4134-4144.2004DOI Listing

Publication Analysis

Top Keywords

human ccr5
20
macaque ccr5
16
residue 198
16
ccr5
13
ccr5 residue
12
human
9
sch-c
9
rhesus macaque
8
human immunodeficiency
8
immunodeficiency virus
8

Similar Publications

-driven CX3CR1 PD-L1 phagocytes route to tumor tissues and reshape tumor microenvironment.

Gut Microbes

December 2025

Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.

The intracellular bacterium (Fn) mediates tumorigenesis and progression in colorectal cancer (CRC). However, the origin of intratumoral Fn and the role of Fn-infected immunocytes in the tumor microenvironment remain unclear. Here, we observed that Fn-infected neutrophils/macrophages (PMNs/MΦs), especially PMNs, accumulate in tumor tissues and fecal Fn abundance correlates positively with an abundance of blood PD-L1 PMNs in CRC patients.

View Article and Find Full Text PDF

Virus-like particles (VLPs) are an attractive vehicle for the delivery of Cas nuclease and guide RNA ribonucleoprotein complexes (RNPs). Most VLPs are produced by packaging SpCas9 and its sgRNA, which is expressed from the RNA polymerase III (Pol III)-transcribed U6 promoter. VLPs assemble in the cytoplasm, but U6-driven sgRNA is localized in the nucleus, which hinders the efficient formation and packaging of RNPs into VLPs.

View Article and Find Full Text PDF

Targeting protein-protein interactions in drug discovery: Modulators approved or in clinical trials for cancer treatment.

Pharmacol Res

December 2024

Unitat Mixta de Recerca en Medicina Genòmica, Universitat Autònoma de Barcelona (UAB)-IR SANT PAU, Barcelona, Spain; Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CIBERER, ISCIII), Madrid, Spain; Servei de Genètica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Spain. Electronic address:

Protein-protein interactions (PPIs) form complex cellular networks fundamental to many key biological processes, including signal transduction, cell proliferation and DNA repair. In consequence, their perturbation is often associated with many human diseases. Targeting PPIs offers a promising approach in drug discovery and ongoing advancements in this field hold the potential to provide highly specific therapies for a wide range of complex diseases.

View Article and Find Full Text PDF

The development of T cell receptor-engineered T cells (TCR-T) targeting intracellular antigens is a promising strategy for treating solid tumors; however, the mechanisms underlying their effectiveness remain poorly understood. In this study, we employed advanced techniques to investigate the functional state of T cells engineered with retroviral vectors to express a TCR specific for the NY-ESO-1 157-165 peptide in the HLA-A*02:01 context. Flow cytometry revealed a predominance of naïve T cells.

View Article and Find Full Text PDF

The immunosuppressive microenvironment in pancreatic ductal adenocarcinoma (PDAC) prevents tumor control and strategies to restore anti-cancer immunity (i.e. by increasing CD8 T-cell activity) have had limited success.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!