The anti-Candida activity of the innate defense protein human lactoferrin was investigated. Lactoferrin displayed a clear fungicidal effect against Candida albicans only under low-strength conditions. This candidacidal activity was inversely correlated with the extracellular concentration of the monovalent cations and was prevented by Na(+) and K(+) (> or 30 mM) and by divalent cations (Ca(2+) and Mg(2+) at > or 4 mM). A slight cellular release of K(+), cytosolic acidification, and a change in the membrane potential were observed in C. albicans cells treated with lactoferrin, suggesting that this protein directly or indirectly interacts with the cytoplasmic membrane. Mitochondrial inhibitors (carbonyl cyanide m-chlorophenylhydrazone, 2,4-dinitrophenol, azide, and antimycin) as well as anaerobic conditions significantly reduced the killing effect of lactoferrin. These results suggest that low-strength conditions and the cellular metabolic state may modulate the candidacidal activity of human lactoferrin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC375254PMC
http://dx.doi.org/10.1128/AAC.48.4.1242-1248.2004DOI Listing

Publication Analysis

Top Keywords

human lactoferrin
12
activity human
8
candida albicans
8
low-strength conditions
8
candidacidal activity
8
lactoferrin
6
activity
5
modulation vitro
4
vitro fungicidal
4
fungicidal activity
4

Similar Publications

Antiparasitic activity of the iron-containing milk protein lactoferrin and its potential derivatives against human intestinal and blood parasites.

Front Parasitol

February 2024

Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States.

An iron-containing milk protein named lactoferrin (Lf) has demonstrated antiparasitic and immunomodulatory properties against a variety of human parasites. This protein has shown its capability to bind and transport iron molecules in the vicinity of the host-pathogen environment. The ability of parasites to sequester the iron molecule and to increase their pathogenicity and survival depends on the availability of iron sources.

View Article and Find Full Text PDF

Oocyte donors' physical outcomes and psychosocial experiences: a mixed-methods study.

Fertil Steril

January 2025

Department of Health Behavior and Biological Sciences, School of Nursing, University of Michigan, Ann Arbor, Michigan.

Objective: To expand knowledge on physical outcomes and psychosocial experiences of oocyte donors after donation across 3 age cohorts.

Design: Cross-sectional mixed-methods survey.

Patients: A total of 363 participants (ages: 22-71 years, M = 38.

View Article and Find Full Text PDF

The Novel Effect and Potential Mechanism of Lactoferrin on Organ Fibrosis Prevention.

Nutrients

January 2025

Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing 100048, China.

Organ fibrosis is gradually becoming a human health and safety problem, and various organs of the body are likely to develop fibrosis. The ultimate pathological feature of numerous chronic diseases is fibrosis, and few interventions are currently available to specifically target the pathogenesis of fibrosis. The medical detection of organ fibrosis has gradually matured.

View Article and Find Full Text PDF

Although eicosapentaenoic acid (EPA) as a functional fatty acid has shown significant benefits for human health, its susceptibility to oxidation significantly limits its application. In this study, we developed a nanoemulsion of the lactoferrin (LTF)-EPA complex and conducted a thorough investigation of its macro- and molecular properties. By characterizing the emulsion with different LTF concentrations, we found that 1.

View Article and Find Full Text PDF

Neurodegenerative diseases are characterized by progressive loss of neurons and persistent inflammation. Neurons are terminally differentiated cells, and lost neurons cannot be replaced since neurogenesis is restricted to only two neurogenic niches in the adult brain, whose neurogenic potential decreases with age. In this regard, the astrocytes reprogramming into neurons may represent a promising strategy for restoring the lost neurons and rebuilding neural circuits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!