Infections due to methicillin-resistant Staphylococcus aureus (MRSA) are an important cause of morbidity and mortality in hospital patients. Moreover, increased incidences of outpatient MRSA have been recently reported. This study investigated the bactericidal activity of dalbavancin, a novel, semisynthetic glycopeptide antibiotic, against methicillin-sensitive S. aureus (MSSA) and MRSA in the rat granuloma pouch infection model. A single intravenous dose of 10 mg of dalbavancin/kg of body weight reduced the viable MRSA count in pouch exudates by more than 2 log CFU/ml, and regrowth was prevented for up to 120 h. Comparable results with vancomycin required four 100-mg/kg intramuscular doses. With one or two doses of vancomycin, the bacterial load declined over proportionately shorter periods of time, followed by regrowth. Reduction of the bacterial load obtained with 100- and 200-mg/kg oral doses of linezolid was relatively transient, with regrowth starting at 48 h. A single 10-mg/kg dose of dalbavancin reduced the MSSA count at 24 h to below the limit of detection, with no regrowth for at least 96 h. Dalbavancin demonstrated good exudate penetration; the ratio of the area under the curve (AUC) in plasma to the AUC in pouch exudate was 1.01. The in vivo activity of dalbavancin in this model is consistent with the antibiotic concentrations that are reached and maintained for extended periods of time after a single 10-mg/kg dose and with in vitro data showing that these concentrations are bactericidal for staphylococci. The pharmacokinetic and efficacy data seen in this relevant model of infection suggest that dalbavancin may be administered less frequently than vancomycin and linezolid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC375267PMC
http://dx.doi.org/10.1128/AAC.48.4.1118-1123.2004DOI Listing

Publication Analysis

Top Keywords

methicillin-resistant staphylococcus
8
staphylococcus aureus
8
rat granuloma
8
granuloma pouch
8
pouch infection
8
infection model
8
activity dalbavancin
8
bacterial load
8
periods time
8
single 10-mg/kg
8

Similar Publications

Introduction: Staphylococcus aureus is a gram-positive, facultatively anaerobic coccus capable of causing infectious diseases in animals and humans. Especially dangerous are multidrug-resistant forms with poor or even no response to available treatments.

Objectives: The study aimed to verify the effect of enzybiotics on the healing of S.

View Article and Find Full Text PDF

Objectives: Staphylococcus aureus is part of the human microbiota, but at the same time, it is capable of causing a wide range of diseases. Due to the ever-increasing resistance to antimicrobial agents and the existence of methicillin-resistant S. aureus (MRSA) strains, there is a real possibility of carrying even this resistant bacterium, which can subsequently cause a severe infection.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) at the University Hospital Olomouc (UHO) over a 10-year period (2013-2022).

Material And Methods: Data was obtained from the ENVIS LIMS laboratory information system (DS Soft, Czech Republic, Olomouc) of the Department of Microbiology, UHO, for the period 1/1/2013-31/12/2022. Standard microbiological procedures using the MALDI-TOF MS system (Biotyper Microflex, Bruker Daltonics) were applied for the identification.

View Article and Find Full Text PDF

Methicillin-resistant Staphylococcus aureus (MRSA) strains are emerging zoonotic pathogens that are of importance not only to human but also to veterinary medicine. MRSA strains spread among humans and animals and can also be transmitted through foods. In this article, we provide a summary of the prevalence of MRSA in the Czech Republic, focusing on the One Health concept, which explores the relationships between human and animal health and the environment.

View Article and Find Full Text PDF

A Bioinspired Virus-Like Mechano-Bactericidal Nanomotor for Ocular Multidrug-Resistant Bacterial Infection Treatment.

Adv Mater

January 2025

Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, P. R. China.

Multidrug-resistant (MDR) bacteria and their associated biofilms are major causative factors in eye infections, often resulting in blindness and presenting considerable global health challenges. Presently, mechano-bactericidal systems, which combine distinct topological geometries with mechanical forces to physically induce bacterial apoptosis, show promising potential. However, the physical interaction process between current mechano-bactericidal systems and bacteria is generally based on passive diffusion or Brownian motion and lacks the force required for biofilm penetration; thus, featuring low antibacterial efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!