Resonant bar simulations in media with localized damage.

Ultrasonics

Interdisciplinary Research Center, Catholic University Leuven Campus Kortrijk, Etienne Sabbelaan 53, B-8500 Kortrijk, Belgium.

Published: April 2004

As a rule, problems of wave propagation in finite media with non-uniform spatial distribution of material properties can only be tackled by numerical models. In addition, the modeling of damage features in a material requires the introduction of locally non-linear and--more important--non-unique equations of state. Using a multiscale approach, we have implemented a non-linear hysteretic stress-strain relation based on the Preisach-Mayergoyz (PM) model, into a numerical elastodynamic finite integration technique program, which has originally been developed for linearly elastic wave propagation in inhomogeneous media. The simulation results show qualitatively good agreement with data of non-linear resonant bar experiments in homogeneously non-linear and hysteretic media. When the PM density distribution of hysteretic units at the mesoscopic level is not uniform and/or confined to a finite area in stress-stress space, the response at high amplitude excitation tend to deviate from the quasi-analytical results obtained in the case of a uniform PM-space density. Localized microdamage features in an intact medium can be modeled by conceiving finite zones with pronounced hysteretic stress-strain relations within a "linear" surrounding. Forward calculations reveal a significant influence of the amplitude dependent resonance behavior on the location (edge versus center of a bar), the extend (width of the zone) and the degree (density of hysteretic units) of damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2003.12.021DOI Listing

Publication Analysis

Top Keywords

resonant bar
8
wave propagation
8
non-linear hysteretic
8
hysteretic stress-strain
8
hysteretic units
8
hysteretic
5
bar simulations
4
media
4
simulations media
4
media localized
4

Similar Publications

Exploring the Gating Mechanism of the Human Copper Transporter, hCtr1, Using EPR Spectroscopy.

Biomolecules

January 2025

Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.

Ctr1 is a membrane-spanning homotrimer that facilitates copper uptake in eukaryotic cells with high affinity. While structural details of the transmembrane domain of human Ctr1 have been elucidated using X-ray crystallography and cryo-EM, the transfer mechanisms of copper and the conformational changes that control the gating mechanism remain poorly understood. The role of the extracellular N-terminal domains is particularly unclear due to the absence of a high-resolution structure of the full-length hCtr1 protein and limited biochemical and biophysical characterization of the transporter in solution and in cell.

View Article and Find Full Text PDF

Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.

View Article and Find Full Text PDF

Charge-transfer complexation of coordination cages for enhanced photochromism and photocatalysis.

Nat Commun

January 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.

Intensified host-guest electronic interplay within stable metal-organic cages (MOCs) presents great opportunities for applications in stimuli response and photocatalysis. Zr-MOCs represent a type of robust discrete hosts for such a design, but their host-guest chemistry in solution is hampered by the limited solubility. Here, by using pyridinium-derived cationic ligands with tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (BAr) as solubilizing counteranions, we report the preparation of soluble Zr-MOCs of different shapes (1-4) that are otherwise inaccessible through a conventional method.

View Article and Find Full Text PDF

Characterization of 1,8-diazabicyclo(5.4.0)undec-7-ene-hydroxyl-based ionic liquid for CO capture.

R Soc Open Sci

January 2025

Fundamental and Applied Sciences Department, Centre of Ionic Liquids, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan 32610, Malaysia.

Six 1,8-diazabicyclo(5.4.0)undec-7-ene-based ionic liquids (ILs) linked with ethyl or propyl hydroxyl cations, coupled with thiocyanate, dicyanamide and bistriflimide anions, were synthesized through a two-step reaction: quaternization and ion exchange.

View Article and Find Full Text PDF

VASARI 2.0: a new updated MRI VASARI lexicon to predict grading and status in brain glioma.

Front Oncol

December 2024

NeuroRadiology Unit, Ospedale del Mare, Azienda Sanitaria Locale Napoli 1 Centro (ASL NA1 Centro), Naples, Italy.

Introduction: Precision medicine refers to managing brain tumors according to each patient's unique characteristics when it was realized that patients with the same type of tumor differ greatly in terms of survival, responsiveness to treatment, and toxicity of medication. Precision diagnostics can now be advanced through the establishment of imaging biomarkers, which necessitates quantitative image acquisition and processing. The VASARI (Visually AcceSAble Rembrandt Images) manual annotation methodology is an ideal and suitable way to determine the accurate association between genotype and imaging phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!