Impacts of pH and molecular structure on ultrasonic degradation of azo dyes.

Ultrasonics

Institute of Environmental Sciences, Boğaziçi University, 80815 Bebek, Istanbul, Turkey.

Published: April 2004

AI Article Synopsis

  • Sonochemical bleaching of monoazo dyes was studied using two model dyes at 30 micromolar concentrations under various pH conditions, revealing that the bleaching rate was influenced by acidity levels.
  • The bleaching process followed a first-order reaction with respect to the dye's maximum visible absorption, with increased acidity leading to faster bleaching, while alkaline conditions slowed down the reaction due to competition for hydroxyl radicals.
  • The rate of decolorization also depended on the dye's molecular size and the type or position of substituents on the azo bonds, with simpler and smaller dye structures bleaching more rapidly than more complex ones.

Article Abstract

Sonochemical bleaching of monoazo dyes was investigated by irradiating 30 microM solutions of two "aryl-azo-naphthol" type model dyes in acidic, neutral and basic conditions using a 300 kHz emitter. It was found that the rate of bleaching in all cases was first order with respect to the maximum absorption of the dye in the visible band, and accelerated with increased acidity. The inhibition observed at alkaline conditions was attributed to the formation of anionic dye structures and their competition with the dye and its intermediate oxidation products for hydroxyl radicals, which are the major precursors of azo dye oxidation in sonicated water. Decolorization of the dyes was also related to the size of the molecule and the type or position of substituents about azo bonds. Comparison of color decay rates at similar conditions showed that the dye with a simple structure, low molecular mass and one ortho-substituent (hydroxyl) about the azo bond bleached considerably faster than the one having a more complicated structure (higher mass) and an additional o-substituent to the azo bond other than the OH group.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2004.01.097DOI Listing

Publication Analysis

Top Keywords

azo bond
8
azo
5
dye
5
impacts molecular
4
molecular structure
4
structure ultrasonic
4
ultrasonic degradation
4
degradation azo
4
dyes
4
azo dyes
4

Similar Publications

A novel series of azo dyes was successfully synthesized by combining amino benzoic acid and amino phenol on the same molecular framework azo linkage. The structural elucidation of these dyes was carried out using various spectroscopic techniques, including UV-vis, FT-IR, NMR spectroscopy, and HRMS. Surprisingly, the aromatic proton in some dyes exhibited exchangeability in DO, prompting a 2D NMR analysis to confirm this phenomenon.

View Article and Find Full Text PDF

For cancer treatment, collaborative strategies have been the mainstream for overcoming the restrictions resulting from monotherapy. Combining chemotherapy with photodynamic therapy (PDT) has been shown to increase the antitumor effect and reduce side impacts. This study reports a hypoxia-activated prodrug BOD-Azo-single with a PDT agent and aniline mustard connected by the azo bond.

View Article and Find Full Text PDF

Herein, we propose magnetic nanocomposites as a powerful new catalyst for organic pollutant reduction. Polypyrrole (PPy) was synthesized in situ within the semi-interpenetrating alginate (Alg)/gelatin (Ge) network in presence of α-FeO as encapsulating matrix and inorganic filler, respectively. The polymeric matrix can act as bifunctional agent such as a binder and stabilizer to improve nanocatalyst stability while preserving their catalytic/magnetic performances.

View Article and Find Full Text PDF

The emerging field of senolytics is centered on eliminating senescent cells to block their contribution to the progression of age-related diseases, including cancer, and to facilitate healthy aging. Enhancing the selectivity of senolytic treatments toward senescent cells stands to reduce the adverse effects associated with existing senolytic interventions. Taking advantage of lipofuscin accumulation in senescent cells, we describe here the development of a highly efficient senolytic platform consisting of a lipofuscin-binding domain scaffold, which can be conjugated with a senolytic drug via an ester bond.

View Article and Find Full Text PDF

Breaking the Myth of Enzymatic Azoreduction.

ACS Chem Biol

January 2025

Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States.

Flavin-dependent azoreductases have been applied to a wide range of tasks from decolorizing numerous azo dyes to releasing azo-conjugated prodrugs. A general narrative reiterated in much of the literature suggests that this enzyme promotes sequential reduction of both the azo-containing substrate and its corresponding hydrazo product to release the aryl amine components while consuming two equivalents of NAD(P)H. Indeed, such aryl amines can be formed by incubation of certain azo compounds with azoreductases, but the nature of the substrates capable of this apparent azo bond lysis remained unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!