Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Modeling of ultrasonic testing has been paid a great attention in nondestructive evaluation community recently since it can provide thorough understanding of underlying physics of ultrasonic testing. As a result, there have been developed various modeling approaches up to now. Especially, many practical models have been developed based on either the multi-Gaussian beam or the Rayleigh-Sommerfeld integral. This paper discusses the modeling of ultrasonic testing with oblique incidence at the near critical angles using these two approaches. The theoretical models that can predict the reflection signals from side drilled cylindrical holes in solid specimen immersed in water are developed. Then, the theoretical predictions for the oblique incidence at the near critical angles are compared to the experiments for the investigation of model behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultras.2004.01.095 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!