A three-dimensional dynamic simulation of walking was used together with induced position analysis to determine how kinematic conditions at toe-off and muscle forces following toe-off affect peak knee flexion during the swing phase of normal gait. The flexion velocity of the swing-limb knee at toe-off contributed 30 degrees to the peak knee flexion angle; this was larger than any contribution from an individual muscle or joint moment. Swing-limb muscles individually made large contributions to knee angle (i.e., as large as 22 degrees), but their actions tended to balance one another, so that the combined contribution from all swing-limb muscles was small (i.e., less than 3 degrees of flexion). The uniarticular muscles of the swing limb made contributions to knee flexion that were an order of magnitude larger than the biarticular muscles of the swing limb. The results of the induced position analysis make clear the importance of knee flexion velocity at toe-off relative to the effects of muscle forces exerted after toe-off in generating peak knee flexion angle. In addition to improving our understanding of normal gait, this study provides a basis for analyzing stiff-knee gait, a movement abnormality in which knee flexion in swing is diminished.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2003.09.018DOI Listing

Publication Analysis

Top Keywords

knee flexion
28
peak knee
16
muscle forces
12
flexion swing
12
normal gait
12
induced position
12
position analysis
12
knee
9
flexion
9
forces toe-off
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!